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Abstract

Board management controllers (BMCs) are ubiquitous in today’s com-
puters. They run in parallel to the computer’s operating system and ful-
fil tasks such as hardware initialisation, system monitoring and provide
low-level remote access to the system using web interfaces or console
redirection. Such low-level access to a system means that BMCs must
be trusted, however, in practice, implementations are seldom trustwor-
thy. BMCs commonly ship as opaque binary blobs with the hardware
they run on, forcing users to run unknown, untrusted, highly privileged
code. Open-source projects such as OpenBMC and u-bmc have been de-
veloped in recent years, claiming to be safe(r) alternatives to the status
quo, and show that there is interest in trustworthy BMCs. We take a dif-
ferent approach: hardware fault handling is important to guarantee safe
system operation. We develop a formally verified, abstract fault handler
model and security properties to ensure correct operation. Finally, we
implement a concrete fault handler for the Enzian platform and show
that is it faithful with respect to our model, even considering misbe-
having devices. All proofs are formally verified in Isabelle/HOL. We
prove that writing formally verified BMC software is not only feasible,
but also possible, and take the first step towards a fully verified BMC for
the Enzian platform.

i





Contents

Contents iii

1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 seL4 and CAmkES . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Isabelle/HOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Simpl and AutoCorres . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 I2C, SMBus and PMBus . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . 13

3 Abstract characterization of alert handling 15
3.1 Abstracting the SMBus alerting procedure . . . . . . . . . . . . 15
3.2 Isabelle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Verification of the seL4 BMC’s alert handling implementation 25
4.1 Implementing an alert controller for the Enzian platform . . . 28
4.2 Verification of the implementation’s behaviour . . . . . . . . . 34

4.2.1 Device quirks and non-compliant devices . . . . . . . . 36
4.3 Relating the concrete and abstract behaviours . . . . . . . . . . 40

4.3.1 Executability of the monadic program representation . 41
4.3.2 Liveness results . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 49
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



Bibliography 51

List of Figures

2.1 Example of the ARA protocol in action . . . . . . . . . . . . . . . . 13

3.1 Full alert receiving procedure for an SMBus alert on the Enzian BMC 16
3.2 Alert handling model abstracted from Figure 3.1 . . . . . . . . . . 17

4.1 Our verification strategy . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Verification steps for proving the behaviour of some function f . . 27
4.3 Architectural overview of the seL4/CAmkES-based Enzian BMC 29
4.4 Overview of Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Overview of Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Our adjusted verification strategy . . . . . . . . . . . . . . . . . . . 46

List of Listings

2.1 Examples of Isabelle/HOL definitions and proofs . . . . . . . . . 6
2.2 Abstractly defining algebraic groups via locales in Isabelle/HOL 8
2.3 Interpreting addition over the integers an algebraic group . . . . 8
2.4 Example of Simpl’s Hoare Logic and VCG . . . . . . . . . . . . . . 9
2.5 Definition of nondet_monad according to Cock et al. [3] . . . . . . . 10
2.6 Partial and total correctness definitions for nondet_monad . . . . . 11
2.7 Example of AutoCorres’ wp tactic . . . . . . . . . . . . . . . . . . . 12

iv



List of Listings

3.1 State definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The alert_handling locale . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Transition predicates between states s and t . . . . . . . . . . . . . 19
3.4 Definition of the next-state relation between two states s and t . . 20
3.5 Definition of the alert controller behaviour . . . . . . . . . . . . . 20
3.6 Definition of the initial state predicate . . . . . . . . . . . . . . . . 21
3.7 No alerts are lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Definition of the alert controller liveness assumption . . . . . . . . 22
3.9 Proof of Theorem 2 under additional liveness assumptions . . . . 22
3.10 Refinement definition . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Proof that the refinement relation of Listing 3.10 is sound . . . . . 24
4.1 Types and global variables for the alert controller . . . . . . . . . . 30
4.2 SMBus alert receiving loop . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Simplified implementation of the handle_alerts function . . . . 32
4.4 Using uninitialised variables to specify nondeterministic behaviour 33
4.5 Simpl translation of read_alert_lines from Listing 4.4 . . . . . . 33
4.6 AutoCorres abstraction of Listing 4.5 . . . . . . . . . . . . . . . . . 33
4.7 Invariants that must always hold during execution of the C code . 35
4.8 Definition of alert prefix equality on concrete states s and t . . . . 35
4.9 An example of a Hoare triple that we proved . . . . . . . . . . . . 36
4.10 Critical part of the SMBus alert handling loop . . . . . . . . . . . . 37
4.11 Changes when accounting for the non-compliant MAX15301s . . 37
4.12 Accounting for long-held alert lines . . . . . . . . . . . . . . . . . 38
4.13 Lifting state of the C code to the abstract alert model . . . . . . . . 40
4.14 Abstract correspondence proof for the receive_alerts behaviour 41
4.15 Abstract correspondence proof of prefix equality on s and t . . . 41
4.16 Total correctness of monadic code does not imply executability . . 42
4.17 Hoare logic for executability of monadic programs . . . . . . . . . 42
4.18 Lifting proofs of AutoCorres abstractions to the Simpl code . . . . 43
4.19 Executablility of total correctness Hoare triples in Simpl . . . . . . 43
4.20 Next-state relation for the receive_pwr_alert function in Simpl . 44
4.21 Concrete next-state relation of the alert controller . . . . . . . . . 44
4.22 Proof that our implementation refines our abstract model . . . . . 44
4.23 C code which cannot be parsed by the Isabelle/C parser . . . . . 47

v





Chapter 1

Introduction

Program testing can be used to show
the presence of bugs, but never to
show their absence!

— Edsger W. Dĳkstra, Notes on
Structured Programming

Modern computers are complex machines. It does not matter if we talk about
about embedded microcontrollers or rack-scale servers: they all consist of
many moving parts, both on the software and hardware level.

The baseboard management controller (BMC) is one of the most trusted, yet
least scrutinised components of modern computers. It is a general-purpose
computer present in essentially every system, which is responsible for tasks
such as power sequencing, thermal monitoring and management, fault re-
porting, console redirection and much more.

The benefits of introducing such complexity at a low level in a system are clear:
complex functionality can be implemented in software rather than hardware,
which is easier to update in case of new processor revisions or bugs in the
firmware. Additionally, they provide remote management capabilities, which
are very useful for dealing with hardware located in datacenters. However,
the downsides are also significant: such low level access to the system means
the BMC must be completely trusted.

BMCs generally run a general-purpose operating system, such as Minix or
Linux, with critical functionality commonly implemented using low-assurance
techniques. Worse yet, many BMC implementations are network-accessible
and thus remotely exploitable by malicious actors. Many vulnerabilities have
already been published1. Almost all BMC implementations these days are

1https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=BMC
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1. Introduction

closed-source software, distributed as opaque binary images that run on the
server board, which additionally requires trust in the board manufacturer.

Thus a conundrum emerges: BMCs are necessarily trusted, but not trustworthy.
The OpenBMC project [28], initially started by IBM, provides an open-source
fully-fledged BMC implementation. It removes the necessity to place trust
in the board manufacturer, since the code that runs on the BMC is publicly
available. Still, OpenBMC is a full Linux distribution, using systemd [29] as
a service manager. These tools, while well-tested, are not infallible.

We believe that a formally verified, open source implementation is the best
way to ensure that the low-level BMC is both trustworthy and secure. Our
first step towards this long-term goal is modelling and verifying one of the
most important components of a BMC: the fault handling mechanism. Faults,
which we also call alerts, are generated by on-board components when their
operating characteristics approach their electrical or thermal limits. It is
crucial to the system safety that a BMC correctly and quickly deals with these
situations, otherwise the underlying hardware could be damaged severely.

In this thesis we develop an abstract alert handling model, resulting from
generalising a concrete alert handling implementation for integrated circuits
attached to the System Management Bus (SMBus) present in modern hard-
ware systems, namely the devices on board of the Enzian2 platform. We
identify two necessary safety and liveness properties that every alert han-
dler should satisfy: (1) all received alerts are handled, and (2) critical alerts
eventually lead to a platform halt. Our model and proofs are formalised in
Isabelle/HOL [23].

We build upon previous work by Heimhofer [8], who developed a minimal
working seL4-based [14] BMC for the Enzian platform, using the CAmkES [17]
component architecture. Our main contribution is a verified alert handling
implementation for the Enzian BMC written in C. We use state-of-the-art
tools [4] to convert our C implementation to a verifiable representation in
Isabelle/HOL. Using Hoare logic [10], we formally describe and prove the
BMC’s alert handling behaviour, which we then relate to our abstract model.
Due to upstream tooling still being developed,

The concrete alert handling implementation for SMBus devices we developed
is tied to the Enzian platform, however our abstract model is not. Our model
is flexible enough to survive contact with the real-world, such as misbehaving
devices or faulty hardware.

2http://enzian.systems
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1.1. Related work

1.1 Related work

The seL4 microkernel and CAmkES have been used for building high-assurance
systems. Not only do they offer isolation proofs between different compo-
nents, but they also allow execution of regular Linux VMs, which is helpful
for porting existing, low-assurance systems to seL4/CAmkES [15], as it allows
one to decompose a monolithic system step-by-step into verified parts.

Cyber-physical systems are a related area which relies on formal methods for
guaranteeing secure operation. Failure to uphold the safety guarantees in
cyber-physical systems may have severe, if not fatal, consequences, such as
failed orbital launches [18]. VeriPhy [1] is an example of a full-stack verifi-
cation toolchain for cyber-physical systems, using domain-specific modelling
tools [5] as well as Isabelle/HOL, and CakeML [16].

Research into BMC implementations and verification is much more sparse.
Most BMC implementations provided by hardware vendors are proprietary
and closed-source. OpenBMC [28] and u-bmc [2] are two open-source BMC
projects. While these implementations do not use high-assurance techniques
such as formal verification, they represent a shift in the general attitude to-
wards highly privileged low-level system components: both projects advertise
themselves as safe(r) than the status quo of vendor-specific firmware.

3





Chapter 2

Background

Bei einem Dichter klauen ist Dieb-
stahl, bei vielen Dichtern klauen ist
Recherche.

— Walter Moers

In this chapter we present a brief overview of the technologies and software
we used. Our work is not clearly situated in a single subarea of computer
science research, but touches upon logic, formal methods and verification,
operating systems research and hardware management.

2.1 seL4 and CAmkES

The seL4 microkernel [14] is a high-assurance, high-performance operating
system microkernel. It belongs to the L4 microkernel family [20], and is the
world’s first fully verified microkernel. Initially targeting the ARM architec-
ture, it has since expanded to cover the x86, x86-64 and RISC-V architectures
as well.

CAmkES [17] is short for component architecture for microkernel-based embedded
systems. It offers a framework for building and composing microkernel-based
operating systems. It follows a component-based software engineering ap-
proach, modelling systems as set of components, interacting via explicit and
well-defined interfaces.

Although CAmkES is not tied to any concrete microkernel implementation,
seL4 provides full integration with CAmkES out of the box. Each component
is run in its own address space and communication is done via synchronous
and asynchronous message passing.

5



2. Background

2.2 Isabelle/HOL

Isabelle/HOL [23] is a proof assistant based on classical higher-order logic.
Its syntax is strongly influenced by the functional programming language
Standard ML [22], with extensions for universal and existential quantifiers,
sets and other common mathematical notation.

As in Standard ML, type variables are denoted by ’a, ’b. Common datatypes
such as bool, nat, int are predefined in HOL, as are fundamental datatypes
such as sets and lists, which are denoted using postfix notation, e.g. nat list
denotes a list of natural numbers, and ’a set list a list of sets of ’as. Tuples
are denoted (a, b) and have type a * b.

Listing 2.1 shows an example of defining the natural numbers Nwith addition
in Isabelle/HOL. The lemma one_plus_one proves its goal by repeatedly
applying the rewrite rules associated with the plus function.

plus (S Z) (S Z)
plus.2−−−−−→ S (plus (S Z) Z)

plus.1−−−−−→ S (S Z)

There are two common styles used for writing formal proofs with Isabelle: the
older apply-style proofs and the newer Isar proofs. Isar proofs are structured
and represent each proof step explicitly, while the apply-style proofs represent
the proof state implicitly. The two plus_Z lemmas in Listing 2.1 illustrate both
proof methods. In general, structured Isar proofs are preferred to apply-style
proofs. Exceptions can be made if specifying the intermediate proof state is
unwieldy or unneccesary. They also show how powerful HOL is compared
to Standard ML: the datatype definition of the natural numbers automatically
derived a sound induction rule for us, without us having to expend any
additional work!

datatype N = Z | S N

fun plus :: "N ⇒ N ⇒ N" where
"plus n Z = n"

| "plus n (S m) = S (plus n m)"

lemma one_plus_one:
"plus (S Z) (S Z) = S (S Z)"
by simp

— Isar proof
lemma plus_Z:
"plus Z m = m"

proof (induct m)
case Z
then show ?case by simp

next
case (S m)
then show ?case by auto

qed

— apply-style proof
lemma plus_Z’:
"plus Z m = m"
apply (induct m)
apply auto

done

Listing 2.1: Examples of Isabelle/HOL definitions and proofs

6



2.2. Isabelle/HOL

Isabelle features a variety of proof tactics such as term rewriting, tableaux
provers and term resolution. Additionally, it can delegate proof goals to a
number of SMT solvers, whose proofs are cross-checked against Isabelle’s own
kernel, enabling powerful proof automation without sacrificing soundness.
This form of proof automation allows users to focus on high-level goals, while
the system deals with technicalities by itself. Table 2.1 denotes common proof
tactics used in Isabelle proofs and which concepts they are based upon.

Proof tactic Mathematical concepts

simp Repeatedly applies rewrite rules until no more
matches are found. Always terminates unless the user
adds rules that lead to a rewriting loop.

auto More aggressive than simp, can solve more compli-
cated problems but does not guarantee termination

force, fastforce Similar to auto, try harder to solve subgoals before
timing out

blast Tableaux prover using first-order unification, works
well on first-order logic and set theory

metis Generic resolution prover

sledgehammer Meta-prover that invokes external SMT solvers and
replays the proof using Isabelle’s trusted kernel

Table 2.1: Common Isabelle proof tactics

Additionally, we make use of an Isabelle feature known as locales, which
allows us to fix constants and variables with some assumptions about them
without re-stating these assumptions in every lemma. A simple example of a
locale defining algebraic groups is shown in Listing 2.2.

If we provide an interpretation of the locale’s constants such that the assump-
tions hold, then we can also derive to all facts proved about the abstract locale.
For example, the integers form a group under addition with identity 0, which
we can easily prove, as shown in Listing 2.3.

Isabelle/HOL has a large standard library containing many algorithms, datas-
tructures and locales with their corresponding correctness proofs.

7



2. Background

locale group =
fixes
id :: ’a and
op :: "’a ⇒ ’a ⇒ ’a" (infixr "⊕" 60) and
inv :: "’a ⇒ ’a"

assumes
assoc: "(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)" and
ident_l: "a ⊕ id = a" and
inv_r: "a ⊕ (inv a) = id"

begin

lemma inv_l:
"(inv a) ⊕ a = id"
by (metis assoc ident_l inv_r)

lemma ident_r:
"id ⊕ a = a"
by (metis assoc ident_l inv_r)

end

Listing 2.2: Abstractly defining algebraic groups via locales in Isabelle/HOL

interpretation i: group
"0 :: int"
"(+) :: int ⇒ int ⇒ int"
"(𝜆i. -i) :: int ⇒ int"

proof (unfold_locales)
show "

∧
a b c::int. (a + b) + c = a + (b + c)"

by simp
show "

∧
a::int. a + 0 = a"

by force
show "

∧
a::int. a + (- a) = 0"

by fastforce
qed

— only proven within the locale!
— prints 0 + ?a = ?a
thm i.ident_r

Listing 2.3: Interpreting addition over the integers an algebraic group

8



2.3. Simpl and AutoCorres

2.3 Simpl and AutoCorres

The Simpl language is a sequential, imperative programming language [25],
whose syntax and semantics (both big-step and small-step) are formalized in
Isabelle/HOL. The Simpl language is flexible, and can be used as a model for
representing concrete programs in an abstract, well-defined context, which is
especially useful in program verification. Its syntax is similar to pseudocode,
as seen in this sample program:

1 DO
2 ‘N :== ‘N - 1;;
3 IF ‘N = 0 THEN
4 ‘M :== 2 * ‘M
5 ELSE
6 ‘M :== ‘M + 1
7 FI
8 OD

Schirmer defines semantics of two Hoare logics [10] for Simpl, which can be
used to reason about behaviour of Simpl programs. Hoare logics allow us
to express properties of (parts of) a program using pre- and postconditions. A
Hoare triple {|𝑃 |} 𝑓 {|𝑄 |}, requires that if 𝑃 holds before 𝑓 , then 𝑄 holds after
execution of 𝑓 .

Partial correctness does not require 𝑓 to terminate, whereas total correctness
requires termination of 𝑓 . Simpl includes a verification condition generator
(VCG) tactic which aids in reasoning about the behaviour of Simpl programs.
An example of a Simpl statement and the VCG tactic is shown in Listing 2.4. It
transforms the statement about Simpl code in a logical implication, which can
be proven with conventional Isabelle tools. Using Isabelle’s custom notation
support, the resulting strucure looks similar to conventional notation in Hoare
logic.

Schirmer’s work also includes the definition of a type-safe subset of C99 [13],
denoted C0, and an embedding of the C0 language in Simpl, including a

lemma simpl_vcg_example:
"Γ ⊢ {| ´N > 0 ∧ ´M < 0 |}

DO
´N :== ´N - 1;;
´M :== 2 * ´M

OD
{| ´N ≥ 0 ∧ ´M < 0 |}"

apply vcg
— have to show ∀N M. 0 < N ∧ M < 0 −→ 0 ≤ N - 1 ∧ 2 * M < 0
apply simp
done

Listing 2.4: Example of Simpl’s Hoare Logic and VCG

9



2. Background

type_synonym (’s, ’a) nondet_monad = "’s ⇒ (’a × ’s) set × bool"

definition
return :: "’a ⇒ (’s, ’a) nondet_monad" where
"return a ≡ 𝜆s. ({(a,s)},False)"

definition
bind :: "(’s, ’a) nondet_monad ⇒ (’a ⇒ (’s, ’b) nondet_monad) ⇒

(’s, ’b) nondet_monad" (infixl ">>=" 60) where
"bind f g ≡ 𝜆s. (

∪
(fst ‘ case_prod g ‘ fst (f s)),

True ∈ snd ‘ case_prod g ‘ fst (f s) ∨ snd (f s))"
Listing 2.5: Definition of nondet_monad according to Cock et al. [3]

correspondence proof which allows properties proven about the Simpl rep-
resentation to be applied to the C0 program [25, Chapters 6 and 7]. However,
Schirmer’s work relies on the user manually translating C0 programs into
valid C0 ASTs, represented as Isabelle/HOL datatypes.

The Data61 group extended Schirmer’s work and developed a parser1 [4],
which automates translation of C to its C0 AST form. It is used, among others,
as part the seL4 correctness proof, parsing and transforming the kernel source
code into a Simpl representation. The C-to-Simpl translator is conservative
in its operation and aims to translate the underlying code faithfully, exposing
low-level implementation details of the original C program to the Simpl layer.

AutoCorres [6] was developed to abstract the Simpl representation of C code
even further, making the resulting structure easier for humans to reason
about. It transforms Simpl programs to a monadic representation, first de-
scribed by Cock et al. [3], and automatically proves correspondence of the
abstracted program and the concrete Simpl implementation.

Cock et al. define a state monad (’s, ’a) nondet_monad in Isabelle/HOL,
and use it to express computations which may (1) mutate global state ’s, (2)
produce nondeterministic (including empty) results and (3) fail. The type ’s
denotes the state type, while the type ’a denotes the result type of the monad.
Listing 2.5 shows the Isabelle/HOL definition of nondet_monad. Even though
the definition seems complicated at first glance, the semantics of return and
bind are straightforward: returnwraps a value of type ’a, and bind combines
the sequential execution of two monads f and g: First f is run, and then g
is run on all resulting states of f, while taking care that the failure flag is
propagated correctly.

State is used to represent the global state of the C program. Nondeterminism
naturally arises in many cases, such as interaction with hardware components

1The C-to-Simpl parser generates Simpl code from the C code, so it might better be
described as translator instead of parser. However tool itself is named c-parser, so we use both
terms interchangeably.

10



2.3. Simpl and AutoCorres

definition valid ("{|_|}/ _ /{|_|}") where
"valid P f Q ≡
∀s. P s −→ (∀(r,s’) ∈ fst (f s). Q r s’)"

definition no_fail where
"no_fail P m ≡ ∀s. P s −→ ¬ (snd (m s))"

definition validNF where
"validNF P f Q ≡ valid P f Q ∧ no_fail P f"

Listing 2.6: Partial and total correctness definitions for nondet_monad

as we see in Chapter 4. Finally, failure is part of the C (and thus C0) semantics,
as is the case with out-of-bounds array accesses and null pointer dereferences
for example.

These concepts are important to distinguish the two different Hoare Logics
formalised for nondet_monad: For a computation f and conditions 𝑃 and 𝑄,
partial correctness ignores failure and nontermination, while total correct-
ness requires f to be failure-free (and also terminating), similar to the Simpl
definitions. For monadic programs, we denote total correctness by adding an
exclamation mark to the formula: {|𝑃 |} f {|𝑄 |}!. These definitions are shown in
Listing 2.6.

Note that total correctness of a monadic program specification f does not
imply executability: if no result state for f exists then the total correctness
Hoare triple {|𝑃 |} f {|𝑄 |}! holds trivially.

To simplify proofs about the behaviours of functions, Cock et al. [3] also
developed a verification condition generator based on Hoare rules in weakest-
precondition form. An example is shown in Listing 2.7. The VCG can be
extended by the user with additional rules, which allows them to build higher
and higher abstractions of their model. Furthermore, these rules do not
strictly have to be in weakest-precondition form: the soundness of the VCG is
not affected by them, however it risks generating unprovable goals, indicating
that the supplied rules have to be strengthened.

11



2. Background

lemma monadic_vcg_example:
"{| 𝜆(n::nat, m::int). n > 0 ∧ m < 0 |}
do
modify (𝜆(n, m). (n-1, m));
modify (𝜆(n, m). (n, 2*m))

od
{| 𝜆_ (n, m). n ≥ 0 ∧ m < 0 |}"

apply wp
— have to show ∀n m. 0 < n ∧ m < 0 −→ 0 ≤ n - 1 ∧ 2 * m < 0
apply auto
done

Listing 2.7: Example of AutoCorres’ wp tactic

2.4 I2C, SMBus and PMBus

The inter-integrated circuit (I2C) bus [27] was developed in 1982 by Philips
Semiconductors as lightweight, serial communication bus between integrated
circuits (ICs). It is a fundamental building block of modern computing sys-
tems, used in almost all modern computing hardware, from mobile phones
to server platforms.

I2C specifies two open drain lines, a data line (SDA) and clock line (SDC).
Devices on the bus are addressed by 7-bit identifiers, 16 of which are reserved
by the I2C specification. I2C buses can have multiple controllers and mul-
tiple peripherals. I2C data is transferred in transactions. Each transaction is
delimited by start and stop symbols and may contain multiple messages of an
arbirary number of bits. We will not go into detail about the electrical details
of the I2C specification, as it is irrelevant to this thesis.

I2C data transfer is not standardised beyond the bit level, and as such each
device has to define its own data transfer protocol. The System Management
Bus (SMBus) was later specified as a restriction of the I2C bus, defining a struc-
tured data interchange format between ICs. Additionally, SMBus introduces
256 registers2, which are an 8-bit identifier used to distinguish the semantic
of a read or write issued to a peripheral. Examples of the structured data
exchange commands are the read-byte or write-word commands. SMBus is
electrically compatible with I2C bus.

The SMBALERT line is an optinal SMBus feature, which is used by peripherals
to notify the bus controller of a pending interrupt. Additionally, it specifies
the Alert Response Address (ARA) protocol, whose purpose is to allow the
controller to determine who is holding the SMBALERT line. Issuing a read from
a special I2C address, the Alert Response Address, returns an alerting device’s
address3. Peripherals are required to release the SMBALERT line immediately

2the official specification calls these command codes
3Specifically the device with the lowest address, due to the I2C electrical characteristics.

12



2.5. Linear Temporal Logic

C SMBALERT line P

enters critical state
takes

detects

read ARA

release

address of P

ARA protocol

Figure 2.1: Example of the ARA protocol in action

once they have responded to the ARA request. Thus, if the alert line is still
held after completing an ARA request, the controller can infer that there is at
least one additional alerting device. An example of a controller C handling a
device alert from a peripheral P is shown in Figure 2.1.

Although SMBus improved upon the I2C specification by defining a struc-
tured data interchange format, the command semantics varied greatly be-
tween different ICs. The Power Management Bus (PMBus) specification ex-
tends the SMBus specification by defining semantics for a number of common
commands across many devices. An example is the OT_FAULT_LIMIT com-
mand, which sets the minimum temperature at which the device will report
an overtemperature fault. PMBus is electrically compatible with SMBus.

PMBus devices also use the SMBALERT line for alerting the host controller. Fur-
thermore, PMBus defines status query commands STATUS_BYTE and STATUS_
WORD, which describe the alert state of various monitors on the peripheral:
temperature sensors, voltage monitors, current monitors and more.

Since all three standards are electrically compatible, it is common that I2C,
SMBus and PMBus devices share the same bus.

2.5 Linear Temporal Logic

Linear Temporal Logic (LTL), first described in 1977 by Pnueli [24], is a formal
logic for expressing the behaviour of infinite sequences of truth valuation
some finite ground set of variables 𝑉 . LTL formulas are defined inductively
as follows:
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2. Background

1. If 𝑎 ∈ 𝑉 , then 𝑎 is an LTL formula.
2. If 𝜑 and 𝜓 are LTL formulas, then ¬𝜑, 𝜑∨𝜓, 𝜑→ 𝜓, ◦𝜑 and 𝜑𝒰 𝜓 are

an LTL formulas.

The logical connectives¬ and∨ are complete for predicate logic, which means
we can derive the standard logical operators ∧,→, and so on as well. The two
LTL-specific operators are ◦ and𝒰 , whose semantics are defined as follows.

Let 𝑠 be a sequence of truth valuations of the variables 𝑉 . We define 𝑠𝑖 to
denote the 𝑖-th valuation of 𝑠, starting at 0. The formula ◦𝜑 is true if and only
if, for a stream 𝑠, 𝜑 holds in the next step

◦𝜑↔ 𝜑 holds in 𝑠1

The operator 𝒰 is called the until operator. The formula 𝜑𝒰 𝜓 is true if 𝜑
always holds until 𝜓 holds. Formally,

𝜑𝒰 𝜓↔ ∃𝑖 ∈ N0. 𝜓 holds in 𝑠𝑖 ∧ ∀𝑗 < 𝑖. 𝜑 holds in 𝑠 𝑗

Note that choosing 𝑖 = 0 is valid if 𝜓 holds immediately.

Using these LTL primitives, one can derive additional operators, which are
displayed in Table 2.2. Ultimately, we are interested in formally verifying LTL
formulas, and fortunately for us the Isabelle system distribution ships with a
LTL library that formally defines all operators we need.

LTL formula Isabelle Semantic

◦𝜑 next 𝜑 𝜑 holds in the next step
♢𝜑 ev 𝜑 𝜑 eventually holds
□𝜑 alw 𝜑 𝜑 always holds

𝜑𝒰 𝜓 𝜑 until 𝜓 𝜑 holds until 𝜓 holds

Table 2.2: LTL operators

There are many more LTL operators that can be derived, however these are
all operators needed to understand the LTL formulas in this thesis.
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Chapter 3

Abstract characterization of alert
handling

Do you wish me a good morning,
or mean that it is a good morning
whether I want it or not; or that you
feel good this morning; or that it is a
morning to be good on?

— Gandalf to Bilbo in The Hobbit
by J. R. R. Tolkien

Before we can implement a alert handler at all, we need to define the semantics
of alert handling. Starting from a very concrete alert handling example, we
develop a general alert handling model, and show that our model satisfies
two important security properties: (1) every alert gets handled and (2) critical
alert lead to a platform shutdown. Proving property (2) depends on weak
fairness gurantees for some actions in the model, which have to be proven
separately.

3.1 Abstracting the SMBus alerting procedure

Figure 3.1 shows the SMBus alerting model for a bus controller C and a
peripheral P. In our concrete case, the Enzian BMC fulfils the role of the
controller C for many, potentially different, peripherals P. Once an alert occurs
on some peripheral P, the BMC has to run the ARA protocol (explained in
Section 2.4) to determine the alerting device. Then, the BMCs fetches detailed
alert information and decides what should happen next. If, for example, the
alert is a critical overtemperature fault, then the next step should be to shut
down the platform to prevent damage to the hardware.
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C SMBALERT line P

enters critical state

takes

detects

read ARA

release

address of P

ARA

get alert info

alert info

Controller C handling an alert on a peripheral P

Figure 3.1: Full alert receiving procedure for an SMBus alert on the Enzian BMC

Algorithm 1: Alert handling procedure for a controller of a single SMBus
1 while alert line held low do
2 addr← get alerting device’s address;
3 d← nil;
4 if device at address addr has additional alert details then
5 d← query alert details;
6 end
7 critical← decide whether (addr, d) is a critical alert;
8 if critical then
9 shutdown platform;

10 end
11 end
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3.1. Abstracting the SMBus alerting procedure

In general, each peripheral P connected to an SMBus is a potential alert source,
while the BMC acts as an alert receiver, responsible for collecting alert details
and correctly handling alerts. Thus, we can partition the resposibilities of the
BMC as an alert handler as follows:

1. Acquiring alert details (address of alerting device, alert kind, etc.)
2. Consuming all received alerts and deciding if a shutdown is needed
3. (if necessary) Shut down the platform

Naïvely translating these steps into an algorithm results in something similar
to Algorithm 1. Algorithm 1 is correct with respect to the semantics of
the SMBus alerting schema. However, this code is not particularly suited
for verification: defining semantics for Algorithm 1 is difficult because it
combines multiple device and alert handler state transitions in one function.
Reasoning about transient intermediate states is cumbersome and error prone.

Instead, we implement the three alert handling tasks separately: each part has
a well-defined, limited reponsibility and allows us to assign clear semantics
to it. Alerts are initially received from a source by an alert receiver, and then
persisted until they are consumed.

Alert
sources

Alert
re-

ceivers

Alert
han-
dler

Shut-
down

outside world

alert controllernotify pollor

record alerts,
then signal

clears alerts,
may trigger

Figure 3.2: Alert handling model abstracted from Figure 3.1

We limit the number of alerts stored to some arbitrary but fixed natural
number 𝑛. An abstract model does not require this in any way, however all
its implementations are constrained by a finite amount of memory, and hence
can only store a finite number of alerts. As long as strictly less than 𝑛 alerts
have been observed, the controller has to correctly record incoming alerts. No
guarantees apply to any alerts received beyond that.

Additionally, we allow each alert receiver to mask all incoming alerts. If the
alerts for a receiver are masked, then the controller must not change its state
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3. Abstract characterization of alert handling

when receiving an alert on that receiver; otherwise it proceeds with the flow
devised in Figure 3.2.

3.2 Isabelle model

Having informally derived our alert handling model in the previous section,
we formalise it in Isabelle/HOL. The alert controller’s state is parametrised by
two types: the receiver type ’r, which ranges over all possible alert receivers,
on, and the alert details ’a, which represents information relevant to an alert.
The exact semantics of these types are to be determined by the concrete
implementation.

The state itself is composed of three parts: information about the masked
state of each alert receiver, the (multi-)set of alerts that have been received,
but not handled yet, and a boolean to indicate whether the platform should
shut down. The controller’s behaviour is characterised by an infinite stream
of states, which we call a trace. The state definition is shown in Listing 3.1.

record (’r, ’a) state =
alerts_enabled :: "’r ⇒ bool"
alerts :: "’a multiset"
shutdown_triggered :: bool

type_synonym (’r, ’a) trace = "(’r, ’a) state stream"

Listing 3.1: State definitions

Each alert ’a occured on receiver ’r, which is determined by the alert_
receiver function. The is_critical_alert function distinguishes critical
alerts from non-critical alerts. After handling a critical alert, a platform shut-
down should be triggered. Finally, we fix the maximum number max_alerts
of alerts that the controller guarantees to handle correctly. These Isabelle def-
initions are shown in the locale definition of Listing 3.2. Note that our model
is independent of the implementations of these functions, we only require
them to exist.

locale alert_handling =
fixes
alert_receiver :: "’a ⇒ ’r" and
is_critical_alert :: "’a ⇒ bool" and
max_alerts :: nat

begin

Listing 3.2: The alert_handling locale
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3.2. Isabelle model

There are five different transitions that can take place on a state:

1. Enabling alerts on receiver ’r
2. Disabling alerts on receiver ’r
3. Receiving alerts on receiver ’r
4. Handling pending alerts
5. (if required) Executing a platform shutdown

Additionally, we allow an idling transition, which keeps the state unchanged.
We express these transitions as predicates from one state to another, adding
additional parameters when necessary. These are shown in Listing 3.3.

In order to model changes of functions, we use Isabelle’s update syntax for
functions, where g = f(x := 1) defines a function g that is identical to f in
every argument except that it maps x to 1. A similar syntax exists for records
as well, where t = s(|field := 1|) denotes a record t that is identical to s,
except for the value of field, which is 1.

definition enable_alerts’ where
"enable_alerts’ s t r ≡
t = s(| alerts_enabled := (alerts_enabled s)(r := True) |)"

definition disable_alerts’ where
"disable_alerts’ s t r ≡
t = s(| alerts_enabled := (alerts_enabled s)(r := False) |)"

definition receive_alerts’ where
"receive_alerts’ s t r as ≡

size (alerts s + as) ≤ max_alerts
∧ t = (if alerts_enabled s r

then s(| alerts := alerts s + as |)
else s)"

definition handle_alerts’ where
"handle_alerts’ s t ≡
t = s(| alerts := {#},

shutdown_triggered := shutdown_triggered s
∨ (∃ a ∈# alerts s. is_critical_alert a) |)"

definition shutdown’ where
"shutdown’ s t f ≡

shutdown_triggered s
∧ t = s(| alerts_enabled := f,

shutdown_triggered := False |)"
Listing 3.3: Transition predicates between states s and t

The transitionsenable_alerts anddisable_alerts are straightforward. The
transition receive_alerts is valid iff the number of alerts is at most max_
alerts and alert receiving is enabled on 𝑟, otherwise the state must be un-
changed. Handling alerts must consume all of them and trigger a shutdown
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3. Abstract characterization of alert handling

definition next’ :: "(’r, ’a) state ⇒ (’r, ’a) state ⇒ bool" where
"next’ s t ≡ s = t

∨ (∃ r. enable_alerts’ s t r)
∨ (∃ r. disable_alerts’ s t r)
∨ (∃ r as. receive_alerts’ s t r as)
∨ handle_alerts’ s t
∨ (∃ f. shutdown’ s t f)"

Listing 3.4: Definition of the next-state relation between two states s and t

if a critical alert was among the ones processed. Finally, shutdown resets the
shutdown_triggered flag and additionally can en- and disable alerts arbi-
trarily. The rationale for the latter is that after a platform shutdown, various
alerts may trigger (for example a low voltage alert), which are entirely ex-
pected, since the platform is shut down.

Combining these state transitions allows us to define a next-state relation,
shown in Listing 3.4. It relates two states s and t iff there is exists a suitable
transition between s and t.

The alert controller’s behaviour is then an infinite stream of states, related by
the next’ relation. The corresponding Isabelle/HOL definitions are shown
in Listing 3.5.

definition "next" :: "(’r, ’a) trace ⇒ bool" where
"next s ≡ shd s = shd (stl s)

∨ enable_alerts s
∨ disable_alerts s
∨ receive_alerts s
∨ handle_alerts s
∨ shutdown s"

lemma next_iff_next’:
"next s ←→ next’ (shd s) (shd (stl s))"
unfolding next_def next’_def by blast

abbreviation alert_handler_behaviour :: "(’r, ’a) trace ⇒ bool" where
"alert_handler_behaviour s ≡ alw next s"

Listing 3.5: Definition of the alert controller behaviour

Additionally, we define a predicate to characterise the initial states of the
system. In an initial state, no alerts have been received and no shutdown
was triggered. Which receivers are enabled is arbitrary, and may vary from
implemenation to implementation. The init predicate is shown in Listing 3.6.

Note that the alert controller behaviour is a predicate on traces, meaning
there are potentially infinitely many valid alert controller behaviours. We
rely on two properties to guarantee safe behaviour, which we formalised as
LTL properties.
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3.2. Isabelle model

definition
init :: "(’r, ’a) state ⇒ bool"

where
"init s ≡ alerts s = {#}

∧ ¬ shutdown_triggered s"
Listing 3.6: Definition of the initial state predicate

Theorem 1. Once an alert was received, it stays until it is handled. In other words,
no alert is lost. We can express this by the LTL property

□ (alerts_preserved𝒰 handle_alerts)
where alerts_preserved denotes the property that alerts s ⊆# alerts t.
Theorem 2. If a critical alert was received, then a shutdown is eventually triggered.
We can express this by the LTL property

□ ((∃𝑎 ∈ alerts. (is_critical_alert 𝑎)) −→ ♢ shutdown)

Proving Theorem 1 is straightforward: it suffices to show that for two consec-
utive states s and t either we have that alerts s ⊆# alerts t or the transition
from s to t was the alert handling transition. We can express and prove this
in a few lines of Isabelle, as seen in Listing 3.7.

lemma no_alerts_lost_step:
assumes
"next’ s t"

shows
"alerts_preserved’ s t ∨ handle_alerts’ s t"

using assms
by (cases rule:next’_cases, auto)

theorem no_alerts_lost:
"alert_handler_behaviour s

=⇒ (alerts_preserved until handle_alerts) s"
by (coinduction arbitrary:s rule:UNTIL.coinduct,

metis)

Listing 3.7: No alerts are lost

However, proving Theorem 2 is not possible without liveness guarantees,
since the controller can choose to idle eternally. Verification of this theorem
relies on a weak fairness assumption for the handle_alerts and handle_shutdown
transitions, as is defined in Listing 3.8. Informally, weak fairness for a transition
f implies that if f is continually enabled, then it must also occur eventually.

Using these additional assumptions it is possible to prove that once a critical
alert was received, the controller will eventually shut down the platform, as
proved in Listing 3.9.
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abbreviation alert_handler_liveness :: "(’r, ’a) trace ⇒ bool" where
"alert_handler_liveness s ≡

alw (ev handle_alerts) s
∧ alw (holds shutdown_triggered impl ev shutdown) s"

Listing 3.8: Definition of the alert controller liveness assumption

theorem critical_alert_implies_shutdown:
defines
"P ≡ 𝜆s. ∃ a ∈# alerts s. is_critical_alert a" and
"Q ≡ shutdown"

assumes
"alert_handler_behaviour s" and
"alert_handler_liveness s"

shows
"(holds P impl ev Q) s"

proof (rule impI)
assume 1: "holds P s"
have "alw (ev handle_alerts) s"

using alert_handler_spec_def assms by blast
let ?n = "wait handle_alerts s"
have 2: "ev handle_alerts s"

using assms by blast
define r where "r ≡ sdrop ?n s"
have "alerts (shd s) ⊆# alerts (shd (sdrop ?n s))"

using alerts_msubset assms by blast
then have "alerts (shd s) ⊆# alerts (shd r)"

unfolding r_def using assms by blast
then have 3: "holds P r" unfolding P_def

using "1" P_def set_mset_mono by auto
define r’ where "r’ ≡ stl r"
have "ev Q r’"
proof -

have "alert_handler_liveness r’"
using alw_sdrop assms r’_def r_def by auto

moreover have "holds shutdown_triggered r’"
using sdrop_wait handle_alerts’_def
unfolding r’_def r_def Q_def
by (smt)

ultimately show ?thesis using Q_def by blast
qed
then show "ev Q s"

using alw_sdrop not_ev_iff r’_def r_def Q_def
by blast

qed

Listing 3.9: Proof of Theorem 2 under additional liveness assumptions
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3.2. Isabelle model

3.2.1 Refinement

In order for our model to be useful, we have to be able to transfer the security
properties we have proven to concrete implementations. We achieve this
using refinement mappings [19]. A concrete system𝐶 with initial state predicate
cinit and transition relation cnext refines our abstract model 𝐴 with respect
to a mediator function 𝜋 : 𝐶 → 𝐴 if:

1. If cinit s holds, then init (𝜋s) holds
2. If cnext s t holds, then next (𝜋s) (𝜋t) holds

Condition (2) is often stronger than necessary [9], and we can weaken it by
restricting the concrete states according to some invariant I:

2. If cnext s t and I s hold, then next (𝜋s) (𝜋t) and I t hold

An Isabelle/HOL translation of these conditions in shown in Listing 3.10.

definition refines ::
"(’c ⇒ bool) ⇒
(’c ⇒ (’r, ’a) state) ⇒
(’c ⇒ bool) ⇒
(’c ⇒ ’c ⇒ bool) ⇒
bool" where
"refines I 𝜋 cinit cnext ≡

(∀s. cinit s −→ init (𝜋 s))
∧ (∀s. cinit s −→ I s)
∧ (∀s t. I s −→ cnext s t −→ next’ (𝜋 s) (𝜋 t))
∧ (∀s t. I s −→ cnext s t −→ I t)"

Listing 3.10: Refinement definition

In general, refinement is not complete for proving model simulation, how-
ever in our case it is sufficient. Additionally, we prove its soundness in
Isabelle/HOL: if a concrete model refines an abstract model, then the guar-
antees of Theorems 1 and 2 apply to the concrete model as well. The proof is
shown in Listing 3.11.
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theorem refines_sound:
assumes
"refines I 𝜋 cinit cnext" and
"holds cinit s" and
"alw (lift_next cnext) s" and
"alert_handler_liveness (smap 𝜋 s)"

shows
"alert_handler_spec (smap 𝜋 s)"

proof (unfold alert_handler_spec_def, intro conjI)
show "holds init (smap 𝜋 s)"

using assms by (simp add: refines_def)
show "alw next (smap 𝜋 s)"

by (metis)
show "alw (ev handle_alerts) (smap 𝜋 s)"

using assms by simp
show "alw (holds shutdown_triggered impl ev shutdown) (smap 𝜋 s)"

using assms by simp
qed

Listing 3.11: Proof that the refinement relation of Listing 3.10 is sound
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Chapter 4

Verification of the seL4 BMC’s alert
handling implementation

Jetzt geht es ans Eingemachte.

— German figure of speech

In this chapter we introduce the concrete alert handling code of the BMC and
how it was verified using Isabelle/HOL and AutoCorres.

Figure 4.1 displays our verification strategy. On top of the stack is the ab-
stract model we defined in the previous chapter, with each successive layer
increasing in concreteness until we reach the C implementation. Consecu-
tive layers are connected by some form of correspondence: generation from
a lower layer, as detailed on the arrows. White layers denote parts written
by hand, while gray layers are automatically generated. Solid arrows denote
that a formally verified correspondence proof is produced; this is not the case
for dashed ones.

From our C code the C-to-Simpl parser [4] generates an equivalent Simpl

C code

Simpl code

Monadic representation

Abstract model

C-to-Simpl
parser

AutoCorres

manual re-
finement
proof

Figure 4.1: Our verification strategy
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translation. Note that the C-to-Simpl parser can only parse a subset of C,
which is related to the type-safe C0 language [25]. We call the language
parsed by the Simpl parser “StrictC” [4]. StrictC’s semantics are identical to
the C0 language. Restrictions imposed by StrictC include:

• No goto statements
• No assignments within expressions
• No fall-through cases
• No unions
• No support for _Bool1
• and other smaller issues, some of which we encounter below

These restrictions are not as severe as they seem at first glance, as it is easy
to rewrite our C code to StrictC code. Problems arise when including pre-
written or generated code though, as manual translation is infeasible in these
cases. In Section 4.2 we explain how we deal with this problem, as it arises
using the CAmkES generated glue code.

Simpl is equipped with a verification framework based on Hoare Logic [25].
However, as we see in Section 4.2, the translated code is tedious to verify,
based on the idiosyncrasies of the Simpl language and the structure of the
underlying C code.

Thus the AutoCorres [6] tool was developed: it abstracts the translated Simpl
code into a monadic representation based on state monads, as explained
in Section 2.3. This abstraction occurs in several passes, and for each pass
the AutoCorres tool also automatically generates a formally verified sound-
ness proof, showing that the abstraction is sound. Similar to the Simpl lan-
guage, AutoCorres includes a Hoare logic for its monadic representation and
a weakest-precondition tool to aid the verification process.

Ultimately, we want to relate the behaviour of the C functions to transitions
taken by our abstract model from Chapter 3, using the refinement relation
we specified. The steps we take for a function f are shown in Figure 4.2. We
separate the reasoning about the behaviour of f’s translation from the abstract
model. This way, we are free to modify f’s implementation or the abstract
model with as few adjustments as possible.

This way we separate the proofs about the concrete behaviour of the translated
functions and their correspondence with the abstract model, which is more
robust against small changes of both the abstract model and the alert controller
implementation.

1C’s official boolean type defines _Bool as a keyword for booleans in the C99 standard. It
is used in the stdbool.h include, which may lead to problems when including other code.
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1 void f() {
2 n = n - 1;
3 m = 2 * m;
4 // ...
5 }

parsing and−−−−−−−−−−−−−→
translation (4.1)

"f_monadic ≡ do
modify (𝜆(n, m). (n-1, m));
modify (𝜆(n, m). (n, 2*m))
— ...

od"

proving concrete

behaviour (4.2)

lemma f_concrete:
"{| I |}
f_monadic
{| 𝜆_. I
and f_behaviour s t |}!"

relate concrete and−−−−−−−−−−−−−→
abstract beh. (4.3)

lemma f_abstract:
"f_behaviour s t −→
f_abstract (lift s) (lift t)"

Figure 4.2: Verification steps for proving the behaviour of some function f
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4. Verification of the seL4 BMC’s alert handling implementation

4.1 Implementing an alert controller for the Enzian plat-
form

The Enzian platform is a dual-CPU research computer for systems research,
boasting a powerful, fully programmable FPGA as general-purpose accelera-
tor. The platform features six I2C buses, on which various integrated circuits
are attached that provide a variety of functionality for the Enzian platform:
voltage regulators, voltage and current sensors, fan controllers, and more.
Each of the six buses has a purpose with respect to the connected devices:

1. The sequencer (SEQ) bus featuring two ispPAC-POWR1220AT8 (ISP-
PACs in the following), which are general-purpose voltage monitors
and power sequencers. The ISPPACs control the enabled signals to the
devices on the PWRFAN bus.

2. The power supply (PSU) bus, which is connected to a PMBus/SMBus
controller located in the power supply unit.

3. The clock (CLK) bus, which houses three SiLabs clock generators for
generating various clock signals on the board.

4. The front panel I/O (FPIO) bus. It is currently unused.
5. The power-fan (PWRFAN) bus, which houses CPU and FPGA voltage

regulators and fan controllers.
6. An internal bus of the Enzian BMC SoC, which is irrelevant for our

purposes.

On these six buses there are five alert lines, spread across three buses: the
SEQ and PSU lines have one alert line each while the PWRFAN bus houses
three alert lines. One line attaches to the voltage regulators, denoted PWR,
and two lines attach to the fan controller: A regular, unidirectional line FAN
for alerts and a bidirectional fan fault line FAN_FAULT, which can also be used
to put the fans in a fail-safe mode.

The Enzian BMC is responsible for driving all ICs on the six I2C buses of the
Enzan platform, as well as correctly handling all incoming alerts. Usually,
a SMBus controller has access to the data and clock lines as well as the
SMBALERT line, if available. However the Enzian BMC, a Xilinx Zynq7000 SoC,
does not come with an SMBus controller out-of-the-box. Instead we use the
Zynq7000’s FPGA to run I2C and GPIO IPs on the FPGA fabric, which are
memory-mapped into the BMC’s address space. The I2C cores drive the data
and clock lines for each bus, while the GPIO component monitors the alert
lines and signals the controller whenever any are pulled low.

Figure 4.3 shows a rough overview of the BMC and its connections to the main
Enzian board. The green component denotes the main BMC component,
which is responsible for alert handling on the BMC. The red components
denote dependencies of the alert handler.
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Enzian CPUs

Enzian FPGA
. . .

MAX15301s

ISPPACsI2C buses houses

Enzian BMC
Enzian board

GPIO IPs I2C IPs

alert lines SDA, SCL

FP
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A

GPIO driver I2C driver

Main component Other components

se
L4

memory-mappingHW IRQs

Figure 4.3: Architectural overview of the seL4/CAmkES-based Enzian BMC

We use the same model as Heimhofer [8], whose work we build upon. They
provide infrastructure code, such as low-level drivers for the I2C and GPIO
IPs, as well as an SMBus driver utilising the I2C driver. We improve on
Heimhofer’s work by simplifying the low-level driver interfaces and imple-
menting PMBus support for the devices on the Enzian board.

The initial alert handling implementation [8] is part of the main controller
component shown in Figure 4.3. Its structure significantly differs from the
alert handling model we defined, and thus we implemented our alert handling
approach from scratch in StrictC, closely following the model from Chapter 3.
For each state transition in the abstract model, we define a StrictC function
dealing with the concrete SMBus alert handling. We aim to show that each
concrete function refines the corresponding abstract transition.

To store the received alerts we fix a maximum number of concurrent alerts that
we handle, and an array of that size. Since we may have potentially received
fewer alerts than the array is capable of storing, we also store the number of
received alerts. Additionally, we define an enum for distinguishing the alert
lines on the BMC, and for each alert line l, we track whether alerts on l are
enabled. This is shown in Listing 4.1.
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4. Verification of the seL4 BMC’s alert handling implementation

1 typedef struct alert {
2 alert_line_t alert_type;
3 uint8_t device_address;
4 bool has_pmbus_details;
5 pmbus_status_t status;
6 } alert_t;
7
8 #define MAX_ALERTS 100u
9 const size_t max_alerts = MAX_ALERTS;

10 alert_t alerts[MAX_ALERTS];
11 size_t num_alerts = 0;
12
13 typedef enum alert_line {
14 ALERT_LINE_SEQ ,
15 ALERT_LINE_PSU ,
16 ALERT_LINE_PWR ,
17 ALERT_LINE_FAN ,
18 ALERT_LINE_FAN_FAULT ,
19 N_ALERT_LINES ,
20 } alert_line_t;
21
22 bool alerts_enabled[N_ALERT_LINES] = { false };

Listing 4.1: Types and global variables for the alert controller

For each alert line l on the BMC, we implement the functions l_receive_
alerts, l_enable_alerts, and l_disable_alerts. The l_receive_alerts
function is called whenever the GPIO driver signals that the alert line for l
is pulled low. A simplified variant of the alert receiving code is shown in
Listing 4.2. We omit logging and error checking in this case to better illustrate
the core concepts of our alert controller.

Multiple alert lines can be signaled at once or in rapid succession, which may
lead to data races and other concurrency bugs. Furthermore, our verification
tools do not support concurrent executions, which means that we have to
serialise the functions anyway. Thus we introduce a global lock, which each
function has to take before it executes and must release after its execution.
Hence we can treat each function as running serialised and in isolation.

Next we check the two mandatory conditions for receiving an alert: whether
alerts on line l are enabled, and whether we have at least one open slot to
receive an alert. If any of these checks fail we are allowed to drop the alert
silently.

Then comes the core alert handling loop. We know that the l_receive_alert
is only called when the alert line is held low, so we avoid overhead by not re-
checking the alert line unnecessarily. We query the alerting device’s address
and additional details (if applicable, e.g. for PMBus devices). Finally, we
record the alert in our global array and query the current status of the alert
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line: if it is still held low and we have more space for alerts, we continue with
the next iteration, as shown in Listing 4.2.

1 void l_receive_alert(void) {
2 lock_controller();
3
4 if (!alerts_enabled[ALERT_LINE_L]
5 || num_alerts >= max_alerts) {
6 unlock_controller();
7 return;
8 }
9

10 l_bus_lock();
11 uint32_t alert_line_status = 0x0;
12 while (num_alerts < max_alerts
13 && !(alert_line_status & L_ALERT_MASK)) {
14 uint8_t addr;
15 l_get_alerting_device(&addr);
16
17 if (l_has_pmbus_information(addr)) {
18 alert = l_get_alert_details(addr);
19 } else {
20 alert = {.device_address = addr,
21 .has_pmbus_details = false};
22 }
23
24 alerts[num_alerts] = alert;
25 num_alerts++;
26 alert_line_status = read_alert_lines();
27 }
28 l_bus_unlock();
29
30 notify_alert_handler();
31 acknowledge_alert(L_ALERT_MASK);
32 unlock_controller();
33 }

Listing 4.2: SMBus alert receiving loop

After completing the loop we finally notify the alert handler that there are
alerts for it to consume and acknowledge that we have handled the alerts for
line l. This informs the GPIO core that it should signal us the next time the
alert line for l is pulled low.

Each alert line has a slightly different inner loop, depending on the devices
attached to that bus, however they all follow the general structure of List-
ing 4.2. Note that this implementation requires strict SMBus compliance
from all devices on the bus, and may record spurious alerts if some devices
do not adhere to the SMBus specification. We encounter and detail two such
cases in Section 4.2.1, as well as how we dealt with them.
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1 void handle_alerts(void) {
2 lock_controller();
3
4 for (size_t i = 0; i < num_alerts; i++) {
5 if (is_critical_alert(alerts[i])) {
6 trigger_shutdown = true;
7 }
8 }
9 num_alerts = 0;

10
11 if (trigger_shutdown) {
12 notify_shudown_handler();
13 }
14
15 unlock_controller();
16 }

Listing 4.3: Simplified implementation of the handle_alerts function

The l_enable_alerts and l_disable_alerts functions set the correspond-
ing boolean in the alerts_enabled struct. Enabling alerts for a line also
acknowledges all pending interrupts on that line, so that the alert handler
does not observe stale alerts.

The final two alert handler functions are handle_alerts and shutdown. Han-
dling alerts is comparatively simple: iterate over all alerts and if a critical alert
is encountered, send a signal to trigger the shutdown function. The shutdown
function shuts down all voltage regulators and runs the fans at full speed.
The handle_alerts function in shown in Listing 4.3.

On the surface, verifying the C implementation seems like a simple problem.
However, as described in the beginning of this chapter, the Simpl parser only
parses StrictC, a subset of the C language. We have ensured that the alert
handler code we wrote is valid StrictC, but unfortunately it turns out that
the glue code generated and included by CAmkES is not. We investigated
whether it was possible to apply manual patches to the generated code which
make it parseable, but it turned out that there were too many issues too deep
in the stack, so we had to resort to a different option: supplying specifications
of CAmkES functions which exhibit the same behaviour as the generated
CAmkES code should.

An example is shown in Listing 4.4. The read_alert_lines function reads the
status of all alert lines as uint32_t and returns it. Unfortunately, it is provided
by a different component than the alert handler, which means that a CAmkES-
generated wrapper function is called instead. As explained at the beginning
of this chapter, the generated code is not parseable by the StrictC parser,
and thus we have to resort to abstractly specifying the possible behaviours
of the read_alert_lines function. In principle it is possible to observe any
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valid uint32_t this way, so we (ab)use a specific feature of the C99 (and also
StrictC) language: uninitialised local variables are so-called indeterminate
values, which means that they can be any inhabitant of their type.

1 /*
2 * We intentionally rely on indeterminate values of
3 * uninitialised variables here.
4 */
5 uint32_t read_alert_lines(void) {
6 uint32_t r;
7 return r;
8 }

Listing 4.4: Using uninitialised variables to specify nondeterministic behaviour

Inspecting the Simpl translation reveals that r is indeed initialised nondeter-
ministically, as shown in Listing 4.5. This is very useful for our behavioural
proofs: If read_alert_lines instead always returned a fixed value 𝑟 known
to us, then our verification result would be limited to executions where the
read_gpio_values function returns 𝑟.

However, Listing 4.5 also illustrates the shortcomings of the C-to-Simpl trans-
lation: the parser tries to be as faithful to the semantics of StrictC as possible
during translation, at the cost of additional complexity in the resulting struc-
ture.

1 TRY
2 lvar_nondet_init r_’ r_’_update;;
3 creturn global_exn_var_ ’_update ret__unsigned_ ’_update r_’;;
4 Guard DontReach {} SKIP
5 CATCH SKIP
6 END

Listing 4.5: Simpl translation of read_alert_lines from Listing 4.4

The resulting AutoCorres abstraction is much cleaner: it returns a value from
the set of all 32-bit integers, as shown in Listing 4.6. In general, the AutoCor-
res abstractions generated from the Simpl translations greatly simplified the
required reasoning.

1 read_alert_lines ’ :: (lifted_globals , 32 word) nondet_monad
2 = select (UNIV :: 32 word set)

Listing 4.6: AutoCorres abstraction of Listing 4.5
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4.2 Verification of the implementation’s behaviour

Finally, we have ensured that all functions defined and called in the alert han-
dling code can be parsed by the Simpl parser. We encountered no issues with
AutoCorres’ automatic abstraction, and can thus continue with verification
of the alert controller’s behaviour, as shown in Figure 4.4.

1 void f() {
2 n = n - 1;
3 m = 2 * m;
4 // ...
5 }

parsing and−−−−−−−−−−−−−→
translation

"f_monadic ≡ do
modify (𝜆(n, m). (n-1, m));
modify (𝜆(n, m). (n, 2*m))
— ...

od"

proving concrete

behaviour

lemma f_concrete:
"{| I |}
f_monadic
{| 𝜆_. I
and f_behaviour s t |}!"

relate concrete and−−−−−−−−−−−−−→
abstract beh.

lemma f_abstract:
"f_behaviour s t −→
f_abstract (lift s) (lift t)"

Figure 4.4: Overview of Section 4.2

Note that managing the state of the C code requires explicit synchronisation:
the multiset of observed alerts is now described by two variables instead of
one, and these two variables must be kept in sync with each other. If, for
example, num_alerts pointed somewhere outside of the alerts array, the
concrete program would crash, which would render our safety properties
unprovable. Thus we define an invariant I, which must always be satisfied in
the concrete model.

The two invariants we need are (1) that the number of alerts received is always
less than or equal to the size of the alerts array and (2) that all addresses
referenced by pointers are always valid. These definitions are shown in
Listing 4.7.

For each abstract alert handling function we define predicates on lifted_
globals, which relate concrete states to each other. As explained before, this
simplifies our verification work, as reasoning about the effects of monadic
representations on the concrete representation is simpler than additionally
lifting the effects to the abstract representation, and more resilient to small
changes.

Let us take the representation of the received alerts as a concrete example.
The abstract model uses a multiset to describe the received alerts, which has
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definition
ptr_inv :: "lifted_globals ⇒ bool"

where
"ptr_inv ≡ 𝜆s. is_valid_w8 s addr_ptr

∧ is_valid_w32 s got_ara_response_ptr
∧ is_valid_pmbus_status_C s status_ptr
∧ is_valid_w16 s status_word_ptr"

definition
num_alerts_inv :: "lifted_globals ⇒ bool"

where
"num_alerts_inv ≡ 𝜆s. num_alerts_’’ s ≤ max_alerts"

definition
I :: "lifted_globals ⇒ bool"

where
"I ≡ 𝜆s. ptr_inv s ∧ num_alerts_inv s"

Listing 4.7: Invariants that must always hold during execution of the C code

no direct equivalent in C. Our representation of the received alerts is the
first num_alerts elements of the alerts array, and instead of showing multiset
inclusion of the alerts of some states s and t, we prove that the alerts arrays of
s and t have identical prefixes. We define the alerts_prefix_eq property in
Listing 4.8. In Section 4.3, we show how we relate the prefix equality predicate
to the subset predicate for multisets in.

This example also illustrates why the invariant I is important: without the
guarantee that the number of alerts of t is at most max_alerts, the function
alerts_prefix_eq could index the alerts array out of bounds.

Having formulated the concrete properties and proofs that they imply their
abstract counterparts, we set out to prove that the behaviour exhibited by each
function matched the property we devised. We rely on the Total Hoare Logic
formalized for the state monad by Cock et al. [3] for expressing and proving
the desired concrete properties, as well as the included weakest-precondition
based VCG.

Verification of the alert controller’s AutoCorres-abstracted behaviour was a
mostly mechanical task. Based on the weakest-precondition VCG, we for-
malised and proved successively more complicated total correctness Hoare
triples until we were able to tackle all of the defined functions. As we dealt

definition alerts_prefix_eq where
"alerts_prefix_eq s t ≡

num_alerts_’’ t ≥ num_alerts_’’ s
∧ (∀i < unat (num_alerts_’’ s).

(alerts_’’ t).[i] = (alerts_’’ s).[i])"

Listing 4.8: Definition of alert prefix equality on concrete states s and t
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4. Verification of the seL4 BMC’s alert handling implementation

definition abstract_equality where
"abstract_equality s t ≡

num_alerts_’’ t = num_alerts_’’ s
∧ alerts_’’ t = alerts_’’ s
∧ alerts_enabled_’’ t = alerts_enabled_’’ s
∧ shutdown_triggered_’’ t = shutdown_triggered_’’ s"

definition receive_alerts_enabled where
"receive_alerts_enabled l s t ≡

alerts_prefix_eq s t
∧ alerts_enabled_’’ t = alerts_enabled_’’ s
∧ shutdown_triggered_’’ t = shutdown_triggered_’’ s"

definition receive_alerts_concrete where
"receive_alerts_concrete l s t ≡
if alerts_enabled_’’ s.[unat l] ≠ 0
then receive_alerts_enabled l s t
else abstract_equality s t"

lemma receive_pwr_alert_behaviour:
"{| 𝜆s. I s ∧ abstract_equality s’ s |}
receive_pwr_alert’
{| 𝜆_ t. I t

∧ receive_alerts_concrete ALERT_LINE_PWR s’ t |}!"

Listing 4.9: An example of a Hoare triple that we proved

with multiple similar, but not identical definitions, identifying the right trade-
off between generalisation and repetition was important in keeping the proof
size manageable.

An example of a top-level function for receiving alerts, with its corresponding
Hoare triple, is shown in Listing 4.9. The abstract_equality function captures
the state s’ at the beginning of the execution of receive_pwr_alert’, which
allows us to relate the resulting state t with the initial state s via s’. The
properties we are interested in are that (1) the controller invariant is preserved
and (2) the receive_alerts_concrete property holds between the initial state
s and the resulting state t. The proof is quite long and verbose, and can be
found in the corresponding Isabelle theory.

This Hoare triple is valid only for the receive_pwr_alert function, which
receives alerts on the PWR line. We defined similar properties for the other
transitions and other alert lines on the Enzian board, until we verified the
concrete behaviours of all alert controller functions.

4.2.1 Device quirks and non-compliant devices

Previously in this chapter, we mentioned that the alert handling implemen-
tation we implemented requires all devices to strictly conform to the SMBus
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specification. Unfortunately, not every device on the Enzian board correctly
implements the SMBus alert specification. Listing 4.10 shows the relevant
piece of code.

1 ...
2 uint32_t alert_line_status = 0x0;
3 while (num_alerts < max_alerts
4 && !(alert_line_status & L_ALERT_MASK)) {
5 uint8_t addr;
6 l_get_alerting_device(&addr);
7
8 ...
9

10 alert_line_status = read_alert_lines();
11 }
12 ...

Listing 4.10: Critical part of the SMBus alert handling loop

Correct SMBus alert handling requires that devices correctly respond with
their address in line 6, after they have raised an alert. If devices do not
respond with their address, then we know that an alert has occured, but not
on which device. One example of a device that violates the SMBus protocol
is the MAX15301 [12], a power regulator used to control several on-board
voltages: it does not respond to the Alert Response Address (ARA) request
after taking the SMBALERT# line. Thus it may be possible for us to observe an
alert line taken but no device address being returned by the ARA request.
We have no choice but to resort to polling all MAX15301s to find out which
device is responsible, as shown in Listing 4.11.

1 ...
2 while (num_alerts < max_alerts
3 && !(alert_line_status & L_ALERT_MASK)) {
4 uint8_t addr, got_response;
5 - l_get_alerting_device(&addr);
6 + l_get_alerting_device(&addr, &got_response);
7 + if (!got_response) {
8 + l_poll_max15301s(&addr);
9 + }

10
11 ...
12 }
13 ...

Listing 4.11: Changes when accounting for the non-compliant MAX15301s

The formal correctness proof of the alert receiving function can easily be
adjusted to account for these devices. Furthermore, due to the flexible design
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of our abstract alert handling semantics, no adjustments have to be made to
the abstract model.

Another quirk we observed was some devices seemed to hold the alert line low
for a longer time than specified. According to the SMBus specification a device
must release the alert line before completing its ARA response. However, we
observed that the line was held for up to 40ms after the initial request was
answered. 40ms is a long time, and lead to about 10−20 spurious alerts being
recorded.

Fortunately, the flexibility of our alert handling model made dealing with
this issue simple as well. We can detect a long-held alert line when no device
responds to the ARA request and none of the polled devices signals an alert
either. The adjustments made are shown in Listing 4.12.

1 ...
2 while (num_alerts < max_alerts
3 && !(alert_line_status & L_ALERT_MASK)) {
4 uint8_t addr, got_response;
5 l_get_alerting_device(&addr, &got_response);
6 if (!got_response) {
7 - l_poll_max15301s(&addr);
8 + l_poll_max15301s(&addr, &got_response);
9 }

10
11 + if (!got_response) { break; }
12
13 ...
14 }
15 ...

Listing 4.12: Accounting for long-held alert lines

Not only does this change account for long-held alert lines, but it also gives
us stricter termination guarantees. The alert handling code from Listing 4.10
was guaranteed to record an alert in every iteration, potentially recording
invalid data, while Listing 4.12 only records valid alert data, and terminates
as soon as no more alerts can be read.

Fortunately for us, in this instance we were able to trace the long-held alert
lines back to missing pull-up resistors for the alert lines in the FPGA con-
straints, and this issue vanished after updating the constraint files. However,
we kept the adjustments to the alert handling procedure shown in Listing 4.12.
It protects the alert controller from devices which exhibit this quirk, and is
the overall more defensive option. Adjusting the proofs from Listing 4.11 to
Listing 4.12 was non-trivial, since it complicated the loop invariant we had
formulated: we need a more sophisticated execution model to handle a po-
tential break in the control flow. Nonetheless, we were able to deal with it
using local updates instead of rewriting the whole proof.
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1 void f() {
2 n = n - 1;
3 m = 2 * m;
4 // ...
5 }

parsing and−−−−−−−−−−−−−→
translation

"f_monadic ≡ do
modify (𝜆(n, m). (n-1, m));
modify (𝜆(n, m). (n, 2*m))
— ...

od"

proving concrete

behaviour

lemma f_concrete:
"{| I |}
f_monadic
{| 𝜆_. I
and f_behaviour s t |}!"

relate concrete and−−−−−−−−−−−−−→
abstract beh.

lemma f_abstract:
"f_behaviour s t −→
f_abstract (lift s) (lift t)"

Figure 4.5: Overview of Section 4.3
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4.3 Relating the concrete and abstract behaviours

Having proven that the AutoCorres-abstracted code satisfies the concrete
Hoare triples we defined, it remains to show that the concrete Hoare triples
imply their abstract counterparts, and constructing traces corresponding to
the alert handler behaviour, as shown in Figure 4.5.

In order to show semantic equivalence to our abstract alert handling model
we need to define a function which lifts the C code’s state to the alert han-
dler’s state. The AutoCorres-abstracted lifted_globals type captures the
global variables of the underlying StrictC code, and hence fully describes
the concrete state the alert controller is in. The aptly named lift_c_state,
defined in Listing 4.13 converts the concrete StrictC state to the abstract state
representation we chose in Chapter 3.

type_synonym alert = "alert_C"
type_synonym alert_line = "32 signed word"

definition
lift_alerts_enabled :: "lifted_globals ⇒ alert_line ⇒ bool"

where
"lift_alerts_enabled g s ≡
if unat s < unat N_ALERT_LINES
then (alerts_enabled_’’ g).[unat s] ≠ 0
else undefined"

definition
lift_alerts :: "lifted_globals ⇒ alert multiset"

where
"lift_alerts g ≡ mset (
take (unat (num_alerts_’’ g))

(list_array (alerts_’’ g)))"

definition
lift_c_state :: "lifted_globals ⇒ (alert_line, alert) Model.state"

where
"lift_c_state g = (|
alerts_enabled = lift_alerts_enabled g,
alerts = lift_alerts g,
shutdown_triggered = shutdown_triggered_’’ g ≠ 0
|)"

Listing 4.13: Lifting state of the C code to the abstract alert model

Taking the receives_alerts_concrete relation from the previous section,
we now have to prove that it implies the abstract receive_alerts property
holds after lifting the controller state. This lemma is shown in Listing 4.14. The
proof is quite long and relies on some supporting correspondence lemmas,
such as the prefix equality predicate from Section 4.2.
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lemma receive_alerts_concrete_implies_model:
assumes
"I t" and
"receive_alerts_concrete l s t" and
"l ∈ alert_lines"

shows
"∃ as. model.receive_alerts’ (lift_c_state s) (lift_c_state t) l as"

Listing 4.14: Abstract correspondence proof for the receive_alerts behaviour

Let us instead consider the same example as before: proving that the alerts
of states s are contained in the alerts of state t. We have shown that our
implementation guarantees that the prefixes of alerts of s and t are equal.
Informally, it is easy to see that if the prefixes are equal, then the (multi-) set
of alerts represented by s is a subset of the alerts represented by t. Proving
this formally, on the other hand, requires us to do some work, as shown in
Listing 4.15. The whole proof, including its supporting lemmas, is about 80
lines long, which shows that formally proving what our intuition tells us is
not always straightforward.

lemma alerts_prefix_msubset:
assumes
"I t" and
"num_alerts_’’ t ≥ num_alerts_’’ s" and
"alerts_prefix_eq s t"

shows
"lift_alerts s ⊆# lift_alerts t"

proof -
have "take (unat (num_alerts_’’ s)) (list_array (alerts_’’ t))

= take (unat (num_alerts_’’ s)) (list_array (alerts_’’ s))"
using assms
unfolding alerts_prefix_eq_def
by (meson)

then show ?thesis
unfolding lift_alerts_def
using assms(2) take_unat_decomposition by fastforce

qed

Listing 4.15: Abstract correspondence proof of prefix equality on s and t

4.3.1 Executability of the monadic program representation

As mentioned in Section 2.3, proving total correctness of monadic programs
does not imply that these monadic programs are also executable. Listing 4.16
shows an example of a Hoare triple, which is totally correct but not executable:
there is no way to select from an empty set, hence any postcondition is trivially
valid. However, there is no state resulting from the execution of select {}.

AutoCorres provides a Hoare logic and VCG for executability as well: instead
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lemma not_executable:
"{| P |}
select {}
{| Q |}!"

by (simp add: select_def valid_def no_fail_def validNF_def)

Listing 4.16: Total correctness of monadic code does not imply executability

of specifying that the pre- and postconditions hold for all executions, there
must only exist at least one execution such that the precondition implies the
postcondition. Listing 4.17 shows the definition of exs_valid. Note how the
∀ quantifier was replaced by the ∃ quantifier compared to the definition of
valid.

definition exs_valid ("{|_|} _ ∃ {|_|}") where
"exs_valid P f Q ≡
∀s. P s −→ (∃ (r, s’) ∈ fst (f s). Q r s’)"

definition valid ("{|_|}/ _ /{|_|}") where
"valid P f Q ≡
∀s. P s −→ (∀(r,s’) ∈ fst (f s). Q r s’)"

Listing 4.17: Hoare logic for executability of monadic programs

However, the VCG lemmas for exs_valid are lacking compared to their
total and partial correctness counterparts: many facts we use for the total
correctness proofs are not proven for executability. Furthermore, it would
require us to duplicate the proof effort we have invested in the total correctness
proofs, which is tedious to write and unwieldy to maintain, for example when
updating proofs after code modifications.

Fortunately, there is a simpler solution: total correctness of Simpl programs
also implies executability, and we can use the AutoCorres-generated corre-
spondence proofs to relate the behaviour of the abstracted, monadic program
representation to the behaviour of the equivalent Simpl program, as shown
in Listings 4.18 and 4.19. These definitions require us to deal with some im-
plementation details of the Simpl language, such as having to annotate our
states as Normal s instead of simply s. It is still our preferred approach, as it
introduces no duplicate proofs.

AutoCorres automatically derives ac_corres lemmas for all translated C func-
tions for us. These relate the behaviour of the monadic abstraction A to the
concrete Simpl translation C, according to AutoCorres-derived state transla-
tion functions.

We define the relevant definitions of transition on Simpl states and predicate
liftings. The lifting process is repetitive and mechanical, but necessary since
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we need the executablity property of the Simpl representation to define and
prove the refinement relation between the C implementation and our abstract
model.

Firstly, we have to construct a concrete variant of the next-state relation in-
troduced in Chapter 3. Listing 4.20 shows the concrete next-state relation we
derived for the receive_pwr_alert function. These definitions are repetitive
boilerplate that is necessary because the AutoCorres’ total correctness Hoare
triples are not sufficient to prove executability.

Finally, we combine the next-step relations for the individual function into one
concrete next-step relation, which we will use as basis for proving refinement
of the concrete Simpl and the abstract alert controller model.

We can now prove our main result: that the behaviour of the C implementa-
tion refines the abstract alert handling model. This proof consists mainly of a
long case distinction, which is why we omit those parts here.

This result allows us to transfer the abstract result of Theorem 1 to the concrete
system: it guarantees that our alert controller implementation does not drop
alerts as long as less than max_alerts have been received.

lemma hoaret_from_ac_corres:
"[[ ac_corres st ct Γ rx P’ A C;
{| 𝜆s. P s |} A {| 𝜆rv s. Q rv s |}, {| 𝜆rv s. True |}!;∧
s. P (st s) =⇒ P’ s; ct

]] =⇒ Γ ⊢𝑡 {s. P (st s)} C {s. Q (rx s) (st s)}"
Listing 4.18: Lifting proofs of AutoCorres abstractions to the Simpl code

lemma hoaret_executable:
assumes
"Γ ⊢𝑡 S C T" and
"s ∈ S"

shows
"∃ t. exec Γ C (Normal s) t" (is ?P)
"∀t. exec Γ C (Normal s) t −→ (∃ t’. t = Normal t’)" (is ?Q)

proof -
have 1: "Γ|=𝑡/{} S C T,{}"

by (simp add: assms hoaret_sound’)
from 1 show ?P

by (simp add: assms terminates_implies_exec validt_def)
from 1 assms show ?Q

by blast
qed

Listing 4.19: Executablility of total correctness Hoare triples in Simpl
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definition receive_pwr_alert where
"receive_pwr_alert s t ≡

Γ ⊢ ⟨Call receive_pwr_alert_’proc, Normal s⟩
⇒ Normal t"

Listing 4.20: Next-state relation for the receive_pwr_alert function in Simpl

definition next’ :: "globals myvars ⇒ globals myvars ⇒ bool" where
"next’ s t ≡ s = t

∨ seq_alert_enable s t
∨ psu_alert_enable s t
∨ pwr_alert_enable s t
∨ fan_alert_enable s t
∨ fan_fault_alert_enable s t
∨ seq_alert_disable s t
∨ psu_alert_disable s t
∨ pwr_alert_disable s t
∨ fan_alert_disable s t
∨ fan_fault_alert_disable s t
∨ receive_seq_alert s t
∨ receive_psu_alert s t
∨ receive_pwr_alert s t
∨ receive_fan_alert s t
∨ receive_fan_fault_alert s t
∨ handle_alerts s t
∨ shutdown s t"
Listing 4.21: Concrete next-state relation of the alert controller

theorem concrete_refines_abstract:
"model.refines lift_I (lift_c_state ◦ lift_simpl) init next’"
(is "model.refines ?𝜑 ?𝜋 init next’")

proof (unfold model.refines_def, intro conjI)
show "∀s. init s −→ model.init (?𝜋 s)"
show "∀s. init s −→ lift_I s"
show "∀s t. lift_I s −→ next’ s t −→ model.next’ (?𝜋 s) (?𝜋 t)"
show "∀s t. lift_I s −→ next’ s t −→ lift_I t"

qed

Listing 4.22: Proof that our implementation refines our abstract model

4.3.2 Liveness results

As explained in Chapter 3, proving Theorem 2 (critical alerts eventually lead
to a shutdown) is impossible without liveness assumptions on the overall
controller behaviour. The seL4 microkernel [14] allows users to run threads
using a real-time sensitive scheduler, which we will refer to as the mixed-
criticality systems (MCS) kernel. Using the MCS kernel, we could impose real-
time restrictions on the runtimes of all alert handling routines and guarantee
that our implementation satisfies the required liveness gurantees.

Unfortunately, the Zynq7000 platform, which is the SoC the Enzian BMC runs
on, is not supported by the MCS kernel yet. Furthermore, the verification of
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the MCS kernel is currently a work-in-progress, and there is no complete result
yet. Thus we have no way of formally proving the liveness assumptions of
the Enzian alert controller.

Since we cannot prove our assumptions formally (yet), we can instead rely
on a informal, but standard argument from scheduling theory, namely rate-
monitonic scheduling [21]. A set of 𝑛 tasks 𝜏𝑖 , each with run-time 𝐶𝑖 and
unique period𝑇𝑖 is schedulable on a single, real-time processor if the following
schedulability test is satisfied:

𝑛∑
𝑖=0

𝐶𝑖

𝑇𝑖
≤ 𝑛 ·

(
21/𝑛 − 1

)
In our case, the only functions which require a real-time guarantee are the
handle_alerts and shutdown functions. We estimate the worst-case exe-
cution time for both, and thus derive a suitable scheduling period for rate-
monotonic scheduling.

The runtime of the handle_alerts function shown in Listing 4.3 is clearly
dominated by the for-loop, and hence the execution time of the is_critical_
alert function.

Wall-clock timings show that for one alert, the handle_alerts implemen-
tations takes about 16.3µs. We can easily get a sufficient upper bound by
multiplying this by max_alerts, which gives us about 1.63ms for 100 alerts.

Timings of the shutdown function consistently resulted in less than 3ms,
most of which is spent shutting down various SMBus and PMBus devices.
Doubling that gives us a conservative worst-case estimate of 6ms.

Scheduling handle_alerts with a 6ms period and shutdown with a 18ms
period thus makes the schedulability test pass:

1.63ms
6ms +

6ms
18ms <

2
3 < 2 · (√2 − 1) ≈ 0.8284 . . .

This implies that rate-monotonically schedulinghandle_alerts andshutdown
using the above rates is possible without missing any deadlines, with the re-
maining time being used to schedule other tasks. Not only does it satisfy the
liveness assumptions we made in Chapter 3, but it also suggests a theoretical
worst-case alert handling time of 30ms, if we used a rate-monotonic scheduler
with periods of 6ms and 18ms.

Until the verification of MCS support in seL4 is completed this is the best we
can hope for. Once the Zynq7000 platform is supported by the MCS kernel,
we can use seL4’s periodic thread scheduling support to assign the above
periods to the two functions to at least informally guarantee the necessary
liveness properties.
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4.4 Reflection

In this chapter we developed and formally verified the Enzian seL4 BMC’s
alert controller, based on the abstract model presented in Chapter 3. We
implement an alert handler in C, which is then parsed and transformed into
an representation in Isabelle/HOL using state-of-the-art tools also used by
seL4 [14].

We were roughly able to follow the verification strategy depicted in the be-
ginning of the chapter. The only exception is that the monadic program rep-
resentation, produced by AutoCorres, is not executable. In this case, we had
to resort to utilising the lower-level Simpl translation to get the executability
results we needed. Figure 4.6 depicts the updated strategy we used.

C code

Simpl code

Monadic representation

Abstract model

C-to-Simpl
parser

AutoCorres

manual re-
finement
proof

Figure 4.6: Our adjusted verification strategy

Having to resort to combining multiple layers within our verification stack
complicates our proof slightly. Breaking the layer between AutoCorres and
Simpl adds increases our proof size by about 20%, consisting only of boil-
erplate definitions and proofs. These boilerplate proofs are fairly simple to
maintain, since they are unlikely to change significantly in the future. They
do, however, add a cognitive burden to understanding and extending the
BMC: it is not possible to understand the proof in its entirety without under-
standing the basics of the Simpl and its Hoare logics.

One approach to avoid breaking the abstraction layers could be to treat pro-
grams that have zero valid executions to have failed. Executability results for
deterministic monadic combinators can automatically be derived, and adding
a proof obligation to nondeterministic combinators that their result set is non-
empty could suffice to prove that our modified total correctness also implies
executability.

The Simpl-to-C parser is another component that poses some problems if not
used exactly as intended: parsing StrictC code works just fine, however the
error messages generated when parsing non-StrictC-compliant C code are
cryptic, and determining the root issue requires a measure of familiarity with

46



4.4. Reflection

the parser to decode. An example is the code shown in Listing 4.23, which
uses C’s assignments-are-expressions feature, and hence is not valid StrictC.

1 void f() {
2 int err;
3 if ((err = some_function())) {
4 // do something
5 }
6 }

Listing 4.23: C code which cannot be parsed by the Isabelle/C parser

The C parser’s error message is “syntax error: replacing YEQ with YSTAR”,
which is technically correct, but not user-friendly.

Finally, the CAmkES component system itself brings some complications.
Most importantly, formal correctness proofs of CAmkES components are
currently only possible within a single component, and do not cover the
generated glue code which connects the component instances to each other.
A verified implementation of the glue code has existed previously, but was
scrapped due to performance concerns2. There seems to be ongoing work to
prove correctness of some connectors, which would help in covering a larger
surface area of the CAmkES code. Or perhaps comparing with a seL4-only
implementation can shed some light on this question.

2https://lists.sel4.systems/hyperkitty/list/devel@sel4.systems/thread/
35Y5IJCXTJ4YMADZ4RNLQEHYYYIVRDZY/
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Chapter 5

Conclusion

The best validated formal theorem will
not guarantee correct behaviour if
processor and memory are melting
underneath.

— Klein et al., Comprehensive
formal verification of an OS

microkernel

Starting from a very concrete, SMBus-specific alert handling routine, we
developed a general alert handling model for baseboard management con-
trollers. Our model is general enough to cover interrupt- and polling-based
alerting, and flexible enough to survive encounter with real-world complica-
tions, such as misbehaving devices and hardware issues. Our Isabelle/HOL
model is kept small and simple, weighing in at about 300 lines of proof code.

Furthermore, we implemented a concrete alert handler for the Enzian BMC
and proved its correctness based on the model we developed. The bulk of our
work was spent verifying the alert controller’s behaviour, with the resulting
proofs covering about 3 500 lines, compared to roughly 700 lines of C code.

We show that a verified implementation of a board management controller
is not only possible, but also feasible, using state-of-the-art programming
and verification tools. CAmkES’ modularisation enables multiple people to
concurrently work on verification of disjoint subsystems, which cuts down
on the time it takes to verify an entire BMC.

As stated in the epigraph though, we must look beyond what we verified
and in the greater context of our work. SMBus devices are supposed to
implement a quite rigorous specification, however as we saw in Chapter 4,
some devices do not do so correctly. Our implementation is correct with
respect to our model of the real world, and can account for minor deviations of
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5. Conclusion

the specification. While we strived to make it as general and simultaneously
simple as possible, it is only a model, and must be validated in practice.
Unfortunately, formal verification cannot help us here.

5.1 Future work

Our alert handling model is entirely sequential, and depends heavily on
isolation for its correctness. Some parts of the alert controller are inherently
sequential and cannot run concurrently, for example the communication via
I2C, SMBus and PMBus: due to the electrical implementations of these buses,
they can only be accessed by a single device at a time. Other functionality of
the alert controller may benefit from concurrency, for example alert retention.
Using an array and a past-the-end pointer to index alerts is an effective,
albeit primitive way of implementing a producer-consumer scheme. More
sophisticated queueing approaches, such as CleanQ [7] for example, exist,
and elegantly deal with concurrent modifications, and could be used in the
future.

Aside from our model and implementation, there are other, general steps to
be taken towards producing formally verified baseboard management con-
trollers.

The alert controller implementation we developed relies on PMBus, SMBus
and I2C drivers to communicate with the peripheral devices. These drivers
are unverified, best-effort implementations with no formal semantics or cor-
rectness guarantees. There has been some recent work done for I2C driver
generation [11], which could be a way to improve the verification coverage of
the BMC.

Alert handling is also not the only aspect that the Enzian BMC controller deals
with. It is also responsible for safe power sequencing and device initialisation
on boot. As is the case with the I2C driver, this code is currently unverified
and manually tested. Automatic generation of safe power-transitioning se-
quences, as described for example in [26], would go a long way towards a
fully formally verified baseboard management controller.

Using seL4’s virtual machines, it would be possible to run an unverified BMC
as virtual machine and then isolate and verify the BMC’s components step-
by-step. Unfortunately, VMs are not supported on the current ARMv7-based
Zynq7000 SoC platform used for the Enzian BMC. They would be however
on the newer ARMv8 UltraScale+ platform, which would contribute to an
improved migration experience from the current OpenBMC-based controller.
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