
ETH Library

OpenCL support for Enzian

Master Thesis

Author(s):
Wüthrich, Fabian

Publication date:
2021-09

Permanent link:
https://doi.org/10.3929/ethz-b-000511824

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000511824
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Master’s Thesis Nr. 352

Systems Group, Department of Computer Science, ETH Zurich

OpenCL support for Enzian

by

Fabian Wüthrich

Supervised by

Anastasiia Ruzhanskaia
Prof. Dr. Timothy Roscoe

March 2021–September 2021

Abstract

Recently, there has been growing interest in custom and reconfigurable
hardware. However, commercial hardware platforms have limitations
for research, because they are optimized for specific use-cases or have
proprietary parts. To address this problem, the Systems Group at
ETH built Enzian, a new computing platform tailored for research and
for exploring novel hardware/software co-designs. However, there
is a lack of existing use cases that could promote Enzian as a viable
research platform. In addition, Enzian, like most CPU-FPGA hybrid
systems, is hard to use for computer scientists without a hardware
development background. In this thesis, we add OpenCL support
to Enzian, which not only represents a real-world use case but also
increases the usability of the platform. Using the flexibility of the
Enzian computing platform, we explore different designs and compare
their performance with existing systems. Our preliminary experimental
results show that Enzian can support key features of existing OpenCL
implementations. Because of OpenCL, we were able to port existing
applications to Enzian with little effort. Hence, OpenCL improves the
usability of Enzian and serves as a good use case to prove the feasibility
of the platform. To summarize, Enzian proved to be a viable platform
for computer systems research and will hopefully support researchers
in developing innovative hardware solutions.

i

Acknowledgements

I would like to express my great appreciation to my supervisor Anastasiia
Ruzhanskaia for her valuable and constructive feedback throughout the
development of this thesis. I also want to thank Prof. Dr. Timothy Roscoe for
giving me the opportunity to work with Enzian and for making this thesis
possible. My grateful thanks are also extended to the other members of the
Systems Group, in particular to Abishek Ramadas, who helped with the ECI
layer and to Dr. David Cock, who put me into contact with the staff from
Xilinx. On that note, I would like to thank Xilinx for their assistance with
Vitis. Finally, I wish to thank Manuela Heuberger and my family for their
support and encouragement throughout my study.

iii

Contents

Contents v

1 Introduction 1

2 Background 3
2.1 OpenCL . 3

2.1.1 OpenCL API . 4
2.1.2 OpenCL C . 9

2.2 Enzian . 10
2.3 Xilinx Vitis . 12

2.3.1 Device Binary . 13
2.3.2 Host Binary . 15
2.3.3 Xilinx Runtime (XRT) 15

2.4 AXI . 20

3 Implementation 23
3.1 FPGA Shell / Platform . 25

3.1.1 Hardware Platform . 26
3.1.2 Software Platform . 38

3.2 Vitis Build Tools . 38
3.2.1 Device Binary . 39
3.2.2 Host Binary . 51

3.3 Xilinx Runtime (XRT) . 53
3.3.1 Cross Compilation . 53
3.3.2 Initial Hardware Test . 54
3.3.3 Experiments with the complete XRT Stack 60

4 Evaluation 65
4.1 ECI Performance . 65
4.2 Matrix-Matrix Multiplication 67

v

Contents

4.3 OpenCL API . 69
4.3.1 Platform Layer . 69
4.3.2 Runtime Layer . 71

4.4 Vitis Features . 74
4.4.1 Multiple Kernels . 74
4.4.2 Emulation . 75
4.4.3 Kernel Programming Languages 75
4.4.4 Streaming Data Transfer 76
4.4.5 Command Line Tools 76

5 Related Work 79

6 Conclusion 81
6.1 Memory Topology . 81
6.2 Sub-Cache Line Access . 82
6.3 Program the FPGA with Vitis 82
6.4 Device Tree Probing . 83
6.5 Shared Virtual Memory (SVM) 83

A Acronyms 85

B Example Code 87

C CLI Tools Output 93

Bibliography 97

vi

Chapter 1

Introduction

Recently, there has been growing interest in custom and reconfigurable
hardware. For instance, large internet companies use custom ASICs for
machine learning [24, 39]. Search engines deploy FPGAs in their data centers
to accelerate a variety of online services [7, 12]. Products such as Amazon
F1 [2] bring FPGAs to the cloud, so that even companies without large data
centers can use them. The reasons for this broad adoption of custom hardware
are twofold. First, there has been a significant improvement in design tools
and manufacturing processes. Second, FPGAs are power efficient and can
be reconfigured for different workloads. However, the cost for developing
custom hardware is still immense and only viable for large companies.

As a consequence, academic computer scientists use the same custom com-
puting platforms for their research as the industry. This approach has worked
for the last few decades because hardware has become faster but the under-
lying paradigm has not changed much. However, today’s custom hardware
is so radically different that research using this equipment is increasingly
unrealistic.

For many universities, it is a real challenge to gain access to this kind of new
hardware. Although R&D departments continue to develop novel platforms
such as Microsoft Catapult [31] and Intel Harp [19], these systems are only
used internally or companies provide limited access, for example, as a cloud
service. Additionally, these platforms often lack documentation and are hard
to program. Therefore, academic researchers spend their time understanding
a platform that will be obsolete in a couple of years instead of designing
innovative hardware solutions.

The Systems research group at ETH addresses these problems by building
Enzian, a computer which is not designed for a specific use case such as ma-
chine learning or computer vision but rather for flexibility and for exploring
new hardware/software co-designs. Enzian is a heterogeneous system that

1

1. Introduction

consists of a 48-core ARM CPU and a large Xilinx FPGA. The CPU and FPGA
are not as usually connected over PCIe but over the native cache coherence
protocol of the CPU.

To promote Enzian as a viable research platform, it is necessary to imple-
ment and benchmark existing use cases. Enzian, like most CPU-FPGA
hybrid systems, is difficult to use for computer scientists without a hardware
background. By adding support for a well-known industry standard, like
OpenCL, we can address both of the previous points. On the one hand, we
demonstrate that Enzian supports the same functionality as existing FPGA
accelerators. On the other hand, we improve the usability of Enzian and
make the platform available for the large community of OpenCL developers.

This thesis adds OpenCL support for Enzian. Instead of implementing the
complete OpenCL API, we adapted the Vitis software platform from Xilinx.
Vitis is a framework to create accelerated applications for Xilinx FPGAs. In
particular, Vitis provides a complete OpenCL implementation. However,
Xilinx does not officially support Enzian so we modified the Vitis tools to
make them compatible with the Enzian board. This includes the following
contributions:

• A shell that provides the necessary infrastructure for OpenCL kernels
on the FPGA.

• Build scripts to adjust the Vitis build tools for Enzian.

• Patches for a Linux driver to execute the Xilinx Runtime on Enzian.

Our results show that Enzian can execute OpenCL applications and that
their performance is predictable. Finally, we point out which key features of
OpenCL and Vitis are supported by Enzian.

2

Chapter 2

Background

2.1 OpenCL

This section gives a brief introduction into the Open Computing Language
(OpenCL) and covers the important concept for this work in detail. Xilinx
officially supports OpenCL 1.2 so the following sections are based on this
version [61]. For a in-depth study of OpenCL see [13] or [26].

OpenCL is a heterogeneous programming framework maintained by the
non-profit technology consortium Khronos Group. OpenCL supports a wide
range of heterogeneous platforms consisting of CPUs, GPUs, FPGAs and
other hardware accelerators. OpenCL provides a well-defined abstraction of
the underlying hardware so porting applications to other platforms requires
little effort. Despite this abstraction, OpenCL applications are still adaptable
enough to obtain high performance from a given hardware platform. OpenCL
also enables parallel computing using task- and data-based parallelism.

The OpenCL specification is defined by four models:

1. Platform model: Defines the abstract hardware model that makes the
kernels portable. The model specifies that there is one coordinator (host)
that manages one or more accelerators (devices). A device executes
functions which are called kernels.

2. Execution model: Defines the execution environment and the interac-
tion between the host and devices. It further specifies the concurrency
model for the kernel execution.

3. Memory model: Defines the abstract memory hierarchy for the kernels
independent from the underlying hardware.

4. Programming model: Defines how the concurrency models is mapped
to the physical hardware. Typically, a device is divided into compute
units (CU) and each CU has several processing elements (PE).

3

2. Background

As an example to illustrate these models, let us consider a cloud service that
offers FPGA acceleration. For this service, an accelerator card like the Xilinx
u250 is connected to the x86 CPU over PCIe. The platform model specifies
the accelerator card as a device and the CPU as the host. The host instantiates
the execution environment and defines the degree of parallelism e.g. how
many kernels should be instantiated in the programmable logic (PL). This
is the execution model. The memory model is responsible for allocating
memory and transfer the data over PCIe. Finally, the programming models
maps the kernels to different CUs on the accelerator card and initiates the
computation.

From an application developer’s perspective, OpenCL consists of two parts.
The kernel function is usually a computationally intensive task and is written
in a C-like language called OpenCL C. The kernel is executed on the device.
The host program runs on a conventional CPU and uses the OpenCL API to
interact with the kernel. In the following sections we discuss the OpenCL
API and the kernel function in detail.

2.1.1 OpenCL API

The host program uses the OpenCL API to setup the environment and to
manage the execution of kernels on the devices. The OpenCL API is defined
in a C header file (opencl.h). There is also a C++ API available (cl.hpp) that
wraps the C API and is easier to use. The header file is usually provided by
the vendor-specific implementation of the OpenCL API. Each implementation
supports only devices that a vendor knows how to interact with. For example,
the Intel FPGA SDK for OpenCL can interact with Intel FPGAs but not with
FPGAs from Xilinx. The OpenCL Installable Client Driver (ICD) allows
implementations from multiple vendors to coexist on a system [41].

The OpenCL API is divided into two layers. The platform layer is used
to discover platform capabilities and devices. It is also used to setup the
execution environment. The runtime layer maps the kernels onto devices and
manages the memory.

Platform Layer

A developer can use the platform layer to discover platform capabilities and
devices. The platform and devices are managed in a context. The context
coordinates the host-device interaction. Additionally, the context manages
memory objects and keeps track of which kernel is executed in each device.
The code for creating a context is normally written once and can be reused
for all projects that run on the same hardware. Before creating a context, the
developer must obtain information about the platform and the devices on
the system.

4

2.1. OpenCL

Listing 2.1 shows sample code to create a context. This example is written in
C++ because we used C++ for our benchmark and test programs.

Listing 2.1: Example code for using the platform layer

#define CL_HPP_CL_1_2_DEFAULT_BUILD

#define CL_HPP_ENABLE_EXCEPTIONS

#include <vector >

#include <iostream >

#include <CL/opencl.hpp >

int main()

{

std::vector <cl::Platform > platforms;

cl:: Platform ::get(& platforms);

cl:: Platform platform = platforms.front ();

std::vector <cl::Device > devices;

platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR ,

&devices);

cl:: Device device = devices.front ();

cl:: Context context(device);

...

Initially, the program defines two constants. The first constant sets the
OpenCL version (OpenCL 1.2) and the other constant enables exceptions,
which simplifies error handling. Then, the code includes the OpenCL header
file.

In the main function, the program queries the available platforms on the
system. Usually, there is only one platform installed but the program could
also filter the platforms by vendor name or other properties. In this simple
example, we just pick the first platform.

Next, the platform tries to get a list of devices and picks again the first
available device for simplicity. We can query different types of devices. Here
we ask for accelerators, but we could also filter for other device types like
CPUs or GPUs.

Once the program has a reference to a device, it can create a context that
includes the platform and the device we have created previously. The context
can now be passed to the runtime layer to execute a kernel.

5

2. Background

Runtime Layer

The host application uses the runtime layer to interact with the kernel that
runs on a device. OpenCL objects such as memory, program or kernel objects
are created within a context. The host submits commands to a command
queue to request actions by the device.

Listing 2.2 continues after the previous code and shows all the necessary
steps to create a kernel.

Listing 2.2: Example code for creating a kernel

...

cl:: CommandQueue q(context , device);

char *file = ...

int fileSize = ...

cl:: Program :: Binaries bins{{file , fileSize }};

cl:: Program program(context , device , bins);

cl:: Kernel kernel(program , "vadd");

...

The program creates a command queue with the context and the device
from the previous listing. There are also two flags that can be passed to the
command queue constructor:

CL QUEUE PROFILING ENABLE Enables profiling for this command queue. Pro-
filing collects additional information, that can be used to analyze the
execution of a program.

CL QUEUE OUT OF ORDER EXEC MODE ENABLE Enables the out-of-order execu-
tion mode. The host application can run several copies of the same
kernel or multiple different kernels on a device. There are two ap-
proaches to execute multiple kernels with optimal performance. With a
single out-of-order queue, multiple kernel executions can be requested
through the same command queue. The kernels are executed concur-
rently and in any order. With multiple in-order queues, each kernel
execution is requested by a different command queue. The kernels are
dispatched from different queues and concurrently executed.

Next, we create a program from which we can obtain a reference to a kernel. A
program is a collection of kernels that are identified by the __kernel qualifier
in OpenCL C code. A program can be generated online or offline. The first
method compiles the program at runtime. This allows the compiler to apply
device specific optimizations that could increase performance. However,

6

2.1. OpenCL

runtime compilation is not suitable for FPGAs because the compilation takes
a long time. Thus, many vendors use a separate tool chain to create the FPGA
binary. The binary is then loaded into memory and passed to the program.

In our example, we used the second approach and loaded a binary into
memory. This binary is then, together with the context and a device, passed
to the cl::Program constructor to create a program. We do not show an
example for the online program generation because Vitis does not support
this method.

The kernel is created by providing a reference to a program and the name of
the kernel (vadd in our example). The name must match with the label of the
__kernel identifier. At that point, we have a reference to a kernel and can
start with the kernel execution.

Kernels often access large arrays or images to run a computation on that
data. In many systems, the host and a device do not share a common
address space, so the data needs to be transferred to the device before the
computation can start. The OpenCL runtime manages the data transfers and
dependencies transparently for the programmer. OpenCL uses the concept
of memory objects as a reference to the data that is required by the kernel. A
memory object is only valid in a single context so it cannot be shared between
different contexts. There are two types of memory objects: buffers and images.
Buffers are similar to C arrays and the values are laid out contiguously in
memory. Images allow for certain performance optimizations, but we do not
use images in this thesis.

Listing 2.3 allocates memory and executes a kernel. This example has an
input and an output buffer that are used to transfer data from and to the
kernel.

Listing 2.3: Example code that allocates memory and executes a kernel

...

int size = 32;

std::vector <int > in(size);

std::vector <int > out(size);

std::fill(in.begin(), in.end(), 42);

std::fill(out.begin(), out.end(), 0);

int size_in_bytes = sizeof(int) * size;

cl:: Buffer in_buf(context , CL_MEM_READ_ONLY ,

size_in_bytes);

cl:: Buffer out_buf(context , CL_MEM_WRITE_ONLY ,

size_in_bytes);

7

2. Background

kernel.setArg(0, in_buf);

kernel.setArg(1, out_buf);

kernel.setArg(2, size);

q.enqueueWriteBuffer(in_buf , CL_TRUE , 0,

size_in_bytes , in.data ());

q.enqueueTask(kernel);

q.finish ();

q.enqueueReadBuffer(out_buf , CL_TRUE , 0,

size_in_bytes , out.data ());

verify_result (&in, &out);

...

Initially, the program creates two vectors and fills them with arbitrary values.
Then, we create two buffer object that act as a reference to the underlying
memory. We can pass a number of flags to the constructor of cl::Buffer to
control the allocation of the buffer. For example, the CL_MEM_READ_ONLY flag
can be used to create a read-only buffer.

Next, we associate the buffers with the arguments of the kernel by calling
setArg on the kernel object. The first argument specifies the argument index.
The other argument can either be a scalar value or a reference to a memory
object. Scalar values are used for small data transfers, such as constants or
configuration data. They are passed as input arguments to the kernel and
the host application can only write to such an argument. Memory objects
are used for large data transfers and the host application can both read and
write to these argument.

OpenCL provides different functions to transfer data between the host and a
device. Typically, the functions enqueueReadBuffer and enqueueWriteBuffer

are used for simple applications with no specific access patterns or perfor-
mance requirements. We also used these function in our code. For example,
the call to enqueueReadBuffer transfers the values from the in vector to the
input buffer. The second argument, where we passed CL_TRUE, specifies if
the function is blocking or non-blocking.

There are other functions to transfer data in OpenCL. Xilinx, for example, rec-
ommends to use enqueueMigrateMemObjects for performance reasons. This
function allows to preemptively allocate memory, so the runtime can overlap
memory operations with other unrelated operations. This can potentially
hide memory latencies and increase performance.

8

2.1. OpenCL

Another important function is enqueueMapBuffer. This function maps a
buffer into the host address space and returns a reference to that mapped
region. The host application can use this reference like a normal pointer to
access data in the buffer. Then, the host applications calls enqueueMigrate

MemObjects to transfer the buffer to the device.

Once the data has been successfully moved to the kernel, we can start
the execution with enqueueTask. Many host applications, especially in
GPU acceleration, use the function enqueueNDRangeKernel to start the kernel.
This function spawns multiple executions of a kernel to parallelize the work.
On FPGAs, however, the parallelism happens inside the hardware. Thus, a
single monolithic kernel has often a better performance than many small
kernels.

The enqueueTask function is non-blocking, so we have to call clFinish

before we verify the data. clFinish blocks until all previous commands
in the command queue have completed. Once the kernel has finished its
computation, we can read the result from the output buffer and verify it.

This concludes our discussion of the OpenCL API. The complete source code
of our example application can be found in Appendix B.1. The next section
discusses OpenCL C, a programming language to create OpenCL kernels.

2.1.2 OpenCL C

OpenCL C is a programming language to write OpenCL kernels. The lan-
guage is based on C, but has some restrictions in order to run efficiently on
accelerator hardware. Instead of the main function, the entry point is marked
with __kernel. The host application can refer to this attribute to extract
a kernel from a program. Memory pointers are annotated with different
region qualifiers. For example, the __global attribute indicates that the data
is stored in global memory. Xilinx added additional attributes to OpenCL C,
that can be used to give optimization hints for the high-level synthesis.

Listing 2.4 shows a simple kernel written in OpenCL C. The kernel adds a
constant to an input vector and writes the result to an output vector. This
example has only one kernel, which is marked with the __kernel attribute.
The memory attributes are also present. Both vectors are in global memory
whereas the vector size resides in the constant section of the global memory.
There is also a custom attribute from Xilinx, which gives a hint for pipelining
the loop.

Listing 2.4: OpenCL C kernel

__kernel void vadd(

__global int *in,

__global int *out ,

__constant int size

9

2. Background

) {

__attribute__ ((xcl_pipeline_loop (1)))

for (int i = 0; i < size; i++) {

out[i] = in[i] + 42;

}

}

2.2 Enzian

Enzian is a cache-coherent asymmetric NUMA system with two nodes. One
node is a 48-core ThunderX CPU from Marvell, which has 128 GiB DDR4
memory attached. The other node is a large Xilinx FPGA with access to
512 GiB DDR4 memory. The two nodes are connected over the Enzian
Coherent Interconnect (ECI). ECI is based on the cache coherence protocol of
the Marvell CPU, which allows fast communication between multiple CPU
nodes. The FPGA emulates the coherence protocol and acts as an additional
CPU node. Thus, ECI enables a fine-grained interaction between the FPGA
and the CPU.

Figure 2.1 shows the block diagram of Enzian. The box on the left side
represents the CPU node with the ThunderX processor and four DDR4 slots.
This node has access other interfaces such as PCIe, NVMe or QSFP for
network transceivers. The node on the left hand side contains the FPGA

Figure 2.1: Enzian Block Diagram [1]

10

2.3. Xilinx Vitis

(XCVU9P) and again four DDR4 slots. The interfaces of this node are similar
to the ones attached to the CPU node. ECI connects the two nodes and is
shown in the middle of the diagram.

The cache-coherence protocol splits a shared address space between multiple
nodes. If one node accesses a memory location from another node, ECI prop-
agates the changes over the interconnect. Besides cache-coherent memory
access, the protocol supports I/O registers and inter-processor interrupts.

There are two modules for ECI on the FPGA side, Enzian DMA or Enzian
Directory Controller (DirC) [42]. Enzian DMA is a module that provides
direct access to the CPU DDR memory. The module takes an address and a
size as input and returns the data over an AXI-Stream interface. Writes are
handled similarly. Enzian DirC, on the other hand, implements a directory
controller with three interfaces. The first interface is attached to the CPU,
the second interface is connected to the FPGA and the third interface can
be attached to any byte-addressable memory, such as the FPGA DDR. The
directory controller ensures that all memory changes are propagated to the
correct interfaces. The layers below these modules are not relevant for this
thesis, so we do not cover them. Enzian did not support inter-processor
interrupts at the time of writing.

On the CPU side, Enzian runs Ubuntu 20.04 LTS with a custom Linux kernel.
We can access the FPGA from the CPU by mapping the FPGA address range
into our program, for example, a kernel module. As mentioned earlier, the
address space is split between the CPU and the FPGA. ECI uses two bits (bit
40 and 41) of the address to specify the index of a node. The CPU has index
zero, and the FPGA has index one. Listing 2.5 shows the address map of
Enzian.

Listing 2.5: Enzian address map

// CPU memory

0x0000000000000000 - 0x000000ffffffffff

// FPGA memory

0x0000010000000000 - 0x000001ffffffffff

The first address range is reserved for the CPU DDR memory. The second
address range is for the DDR on the FPGA. ECI propagates reads or writes
to these addresses to the other node and ensures cache-coherency.

2.3 Xilinx Vitis

Vitis is a framework that integrates all Vitis software development into one
unified environment. Before Vitis was introduced, two separate software
development workflows existed. The first workflow was for embedded

11

2. Background

Figure 2.2: Vitis Architecture

software development and targeted embedded devices such as the Zynq-7000
SoC or the Zynq UltraScale+ MPSoC. Embedded developers used the Xilinx
Software Development Kit (SDK) to create programs for embedded devices.
The other workflow was for developing accelerated applications that run
on Alveo accelerator cards. A tool called SDAccel was used to create these
applications. These two workflows still exist in Vitis but redundant parts
were removed.

In this thesis, the focus is on the application acceleration development flow
and the Xilinx Runtime (XRT), as this is the place where the OpenCL API
is implemented. The Vitis application acceleration development flow is
a framework to develop and deploy FPGA accelerated applications using
well-known programming languages for both the hardware and software
components. The software component (host program) is developed using
C or C++ and runs on a x86 or ARM processor. The hardware component
(kernel) is developed in C/C++, OpenCL C or RTL and runs on the FPGA.
OpenCL API calls are used by the host program to interact with the kernel
over XRT.

Figure 2.2 shows the overall architecture of Vitis. The lowest layer is the Vitis
target platform which is shown at the bottom. A platform defines various
aspects about the system on which the application is running. The FPGA shell
is also part of the platform and provides a interface for the Vitis runtime to
communicate with the kernel on the FPGA fabric. A layer above the platform
is the Xilinx Runtime (XRT). XRT provides an API and drivers for the host
application to interact with the platform. XRT also handles transactions
between the host and the accelerated kernels. Next, the Vitis development
kit provides the software development stack. Besides compilers and cross-

12

2.3. Xilinx Vitis

Figure 2.3: Vitis device build process

compilers, the development kit contains analyzers to profile an application
and measure its performance. Debugging and emulation facilities help to
locate and fix issues in the application. At the highest level, Vitis provides
various libraries for existing algorithms that are performance-optimized for
FPGA acceleration. An application can reuse these libraries with minimal
code changes.

The Vitis build process has two separate workflows. The device binary is
built by the Vitis compiler and the GNU compiler collection (GCC) is used to
create the host binary. The following two sections discuss the build process
in detail.

2.3.1 Device Binary

The device binary is created with the Vitis compiler which uses similar
concepts as GCC. Similar to GCC, the Vitis compiler creates object files from
the source code and links the object files to an executable. Figure 2.3 shows
the complete build process. Kernels are developed in either C/C++, OpenCL
C or RTL. Then each kernel, is individually compiled into a Xilinx object file

13

2. Background

(*.xo). Various tools are available to create an object file. Kernels developed
in C/C++ or OpenCL C are compiled directly with the Vitis compiler (v++).
Developers who prefer a graphical interface can work with Vitis HLS IDE
and export an *.xo file from there. Hardware developers can develop a
kernel in Vivado in RTL and use the package_xo Tcl command to export an
object file. The object files are all linked with the target platform using the
v++ --link command. The Vitis linker creates a FPGA binary file (*.xclbin)
which must be passed to XRT to run the accelerated application.

Listing 2.6 shows an example command to create a Xilinx object file using
the Vitis compiler.

Listing 2.6: Example command to create a Xilinx object file

v++ -c -t sw_emu --platform xilinx_u200_xdma_201830_2

-k vadd -o vadd.xo ./src/vadd.cpp

The example passes a number of arguments to the compiler. The first
argument (-c) tells the compiler to compile an object file. There is also a flag
(-l) for linking, which we discuss in the next section. The second argument
(-t) defines the build target. The build target can be sw_emu, hw_emu or hw.
The first two targets are for simulation and the third target creates an actual
device binary. The --platform flag defines the device for which the object
file is built. In this example, we compile for a Alveo u200 accelerator card.
The last three arguments define the kernel name, the output file and the
source file. Executing this command creates a vadd.xo file that can be passed
to the linker.

A Xilinx object file is a ordinary ZIP file, that contains an IP and some
metadata. The Vitis compiler takes the C/C++ or OpenCL C source files and
passes them to Vitis HLS. Vitis HLS uses high-level synthesis to convert the
C/C++ functions into RTL and creates an IP from the synthesised code. In
addition, Vitis HLS creates metadata which describes for example the ports
of the IP. The IP and the metadata is used by the Vitis linker to create the
final design of the system.

Listing 2.7 shows an example command to link the object files with the target
platform.

Listing 2.7: Example command to link object files and a platform

v++ -l -t sw_emu --platform xilinx_u200_xdma_201830_2

-o vadd.xclbin vadd.xo

The arguments for linking are almost the same as for compiling. We can pass
multiple object files to the linker and they get all linked with the platform
to create a final design for the FPGA. The linker determines important
architectural details during the linking phase. In particular, this is where the

14

2.3. Xilinx Vitis

number of Compute Units (CUs) to instantiate in hardware is specified, the
CUs are assigned to Super Logic Regions (SLRs) and where the kernel ports
are connected to memory interfaces. The Vitis compiler provides a variety of
options to customize the linking phase which we do not cover in this section.
We refer the interested reader to the Vitis compiler command reference [59]
for a complete list of all options.

2.3.2 Host Binary

The host program is written in C/C++ and uses OpenCL API calls to interact
with the kernels on the device. The host binary is built either with the
GNU C++ compiler for x86 based systems or with the GNU C++ ARM
cross-compiler for embedded devices. Each source file is compiled to an
object file (*.o) and is then linked with shared libraries from XRT to create
an executable. The XRT shared libraries provide the implementation for the
OpenCL API. The following listing shows an example command to compile
and link a host application.

g++ -Wall -g -std=c++11 host.cpp -o host \

-I${XILINX_XRT }/ include/ \

-L${XILINX_XRT }/lib/ \

-lOpenCL -lpthread -lrt -lstdc++

As this example shows, compiling and linking follows the normal g++ work-
flow. The environment variable XILINX_XRT points to the installation direc-
tory of XRT and is used to direct g++ to the header files and shared libraries
that XRT provides.

There is also the possibility to cross-compile the host application for embed-
ded systems with an ARM CPU. In this thesis, we compile the host program
directly on Enzian so we skip cross-compiling.

2.3.3 Xilinx Runtime (XRT)

The Xilinx Runtime (XRT) is the runtime environment for Vitis applications.
XRT provides user space libraries and Linux kernel drivers to interact with
FPGAs on accelerator cards or in embedded systems. XRT is open source
and the code is available on Github [65].

Figure 2.4 shows a block diagram of the XRT architecture. At the top layer,
we have the host application, that was linked with the XRT shared libraries.
The host application uses several user space libraries from the red box, to
manage the kernels on the FPGA device. In addition, the user space layer
includes command line tools for end-users and system administrators. The
Linux kernel drivers in the orange box export an API for the user space
libraries, that controls access to the devices. The blue layer below the kernel

15

2. Background

Figure 2.4: XRT architecture [64]

provides software that runs directly on the devices. For example on the
Alveo cards, the scheduler for managing the compute units is executed on
the internal Microblaze CPU. In the following sections, we discuss each layer
in detail.

User Space Libraries

XRT provides four user space libraries for the host application. The first
library is libxrt_core which exports a C/C++ API. The API is defined
in the header file xrt.h. This library gives access to every functionality
of XRT and is tailored for developers that require full control over the
runtime. However, application that use the libxrt_core library run only on
accelerators supported by XRT and are not portable. Applications that should
run on multiple accelerator platforms should use the OpenCL API instead.
XRT implements the complete OpenCL 1.2 API in the libxilinxopencl

library. XRT provides an Installable Client Driver (ICD) so the OpenCL
runtime is able to locate the vendor implementation and redirect API calls
appropriately.

Command Line Tools

XRT has three command line tools that can be called from user space. The
first two tools, xbutil and xbmgmt, are used for device management. They
support both the Alveo cards and embedded systems. The FPGA shell on the
device is divided into user functions and management functions to provide
different security levels. The user functions allow end users to load and run
their applications, while management functions are used by administrators to
manage the device. The xbutil command provides the user functions. The
xbmgmt utility, which must run as root, is used for management functions.

16

2.3. Xilinx Vitis

These two security levels are particularly useful in cloud environments. The
third tools is xclbinutil and it us used to query or manipulate the xclbin

file.

Linux Kernel Drivers

Xilinx provides two different Linux drivers for their platforms. The first
driver is for PCIe based platforms and is divided into two modules called
xocl and xmgmt. The second driver is called zocl and supports edge devices.
In a edge device, the CPU and the FPGA are connected over an AXI bus. We
used only the zocl driver in this thesis, so we do not cover xocl.

The zocl driver supports devices like the ZYNQ-7000 and ZYNQ Ultrascale+
MPSoC. In addition, users can create their own hardware platforms, which
are also supported by the driver. The edge driver is not as sophisticated as
the PCIe driver because it does not include the security features provided by
xocl and xclmgmt. The CPU and FPGA are connected over an AXI bus. Data
is either transferred over a shared memory such as the CPU DRAM to which
both the CPU and the FPGA have access or by using a memory management
unit (MMU) that provides shared virtual memory (SVM).

The Linux edge driver has just one module called zocl. This module does
memory allocation, programs the MMU and has an internal scheduler. Addi-
tionally, zocl provides facilities to upload a FPGA binary to the device.

In the following sections, we discuss common concepts for accelerator drivers
and show how each driver type implements these concepts.

Image Download The user application comes as a *.xclbin container file
and needs to be downloaded to the FPGA. This container has a FPGA
bitstream and metadata about the platform. The metadata is divided into
several sections which define the memory topologies, the IPs and other
specifications of the system. The format of the xclbin file is defined in the
xclbin.h header file. For PCIe based platforms, xclmgmt has an ioctl system
call to load a xclbin file. The same system call is supported by zocl for edge
devices.

Both drivers extract the bitstream and program the FPGA using the Linux
FPGA manager API. After programming the device, the driver processes
each section of the xclbin file. Based on the sections in the xclbin file, the
driver initializes the memory manager and instantiate the compute units.
After this procedure, the driver is ready to receive commands from the host
application.

Memory Management XRT exposes a high-level API to user space for mem-
ory management. The central concept of this API is a Buffer Object (BO). A

17

2. Background

BO hides all the complexity that is involved in managing memory in het-
erogeneous systems with multiple address spaces. A developer can simply
allocate a buffer and transfer data between the host and a FPGA device.
The user space library forwards all memory requests via ioctls to the kernel
driver.

The actual memory management happens inside the kernel. XRT must
support a variety of memory topologies. For instance, on PCIe based systems
a developer can initialise multiple memory controllers as hard IPs on the
FPGA, each with its own address space. Usually, device memory is not
exposed to the CPU, so XRT uses host memory pages to back the device
memory to support, for example, mmap calls. The host and device memory
are kept in sync with a PCIe DMA engine. Another example are edge devices,
where the CPU and the FPGA usually share the same memory. In addition,
edge devices can instantiate soft memory controller directly in the FPGA
fabric or configure the ARM SMMU for SVM.

To support all these memory topologies, XRT uses the Linux DRM frame-
work [8]. Initially developed for GPU drivers, many concepts of DRM can
be reused for accelerators, especially the memory management. XRT uses
two different memory allocators from DRM. The drm_mm allocator is used to
reserve memory on the FPGA. To allocate memory in the CPU DRAM, XRT
uses the Continuous Memory Allocator (CMA). The Linux DRM framework
hides a lot of the complexity of DMA transfers and coherency.

Scheduler XRT has a dedicated component, called the Kernel Domain
Scheduler (KDS), that is responsible for scheduling. KDS is part of the driver
on edge devices and runs in kernel space. On PCIe based systems, KDS is a
separate program that runs on the Microblaze CPU in the FPGA. The KDS
was probably moved to the Microblaze to increase performance.

XRT uses the concept of a Compute Unit for scheduling. A CU is an instance
of a kernel. The abstraction of a CU is necessary because an application can
have more than one instance of a kernel. In OpenCL a device is divided into
several compute units, and compute units have several processing elements.
In that regard, the OpenCL and XRT definition of a CU agree. However, XRT
does not use processing elements.

The xclbin file defines the number of CUs in an program. The driver parses
the xclbin file and registers a new sub device for each CU in the Linux kernel.
The user space library submits execution requests over ioctl system calls. The
requests are defined in the file ert.h. KDS receives these requests and runs
the requested CUs if possible.

KDS controls a CU over a set of registers. These registers can be accessed
over an AXI-Lite port, that is connected to the kernel. The first couple of

18

2.3. Xilinx Vitis

registers are the same for all kernels. The first register is usually reserved
for control signals. The scheduler uses these signals to start the kernel or
check the status of an execution. Then follow various registers to control
the interrupts. After this static section, each kernel has registers to control
the arguments of the kernel function. A kernel argument can either be a
scaler value or a pointer to an array. Scalar values are directly written into
the register of the respective argument. For array arguments, XRT writes the
start address of the array to the register and the kernel fetches the data over
AXI using this address.

As described in the previous section, the first register has various control
signals. These signals may change with the kernel execution model. A kernel
can have three execution models.

AP CTRL HS This model and has two control bits, ap_start and ap_done.
KDS writes a one to ap_start to start the kernel. Then, KDS waits until
ap_done is set by the kernel. After processing the result of the kernel
computation, KDS can start another kernel run. As you can see, this
model supports only sequential execution so there is, for example, no
way to hide a data movement latency. For that reason, this model is
now deprecated.

AP CTRL CHAIN This is the default model for Vitis kernels. The model sepa-
rates input and output synchronization. With this separation, a new
kernel execution can be started, even if the previous execution is still
running. This allows a pipelined execution model that can achieve
better performance. The kernel inputs are controlled with the register
bits ap_start and ap_ready. KDS writes the memory addresses to
the correct registers and sets ap_start to one. If ap_ready is one, the
kernel is ready to receive data for the next kernel execution, even if
the previous run has not been finished. The scheduler can now write
the new memory addresses and start the kernel again. The outputs are
synchronized with the ap_done and ap_continue bits. If the kernel has
a result ready, the bit ap_done is set to one. XRT can now read the result
from the output of the kernel. If XRT is ready for the next result, it sets
ap_continue to one and the kernel provides the result of the next exe-
cution. To benefit from this pipelined execution, the host code must use
the correct API calls, for example, the clEnqueueMigrateMemObjects

OpenCL function to move data ahead of kernel execution.

AP CTRL NONE This model does not have any control signals and the kernel
is running as soon as input data is available (free-runnning). This mode
is particularly useful in combination with streaming interfaces.

To monitor the kernel execution, KDS can either actively poll the ap_done

signal or use an interrupt to receive a notification from the kernel. KDS noti-

19

2. Background

fies the user space library asynchronously over the POSIX poll mechanisms
when the kernel finished its execution.

Hardware Layer

The lowest layer of the XRT stack, is the hardware layer. This layer contains
hardware definitions, FPGA shells and device firmware. Although the XRT
code is available on Github, most of the hardware layer consists of proprietary
IPs and binary files, so it is hard to understand for the end-user. Anyway, the
hardware definition and FPGA shell for a device are normally packed into
a platform. Users have the possibility to create their own platforms, that are
supported by XRT. See chapter 3.1 for a detailed discussion about custom
platforms.

2.4 AXI

The Advanced eXtensible Interface (AXI) is a protocol for on-chip commu-
nication. Initially developed by ARM, the protocol is now widely used by
various chip manufacturers, including Xilinx. Many Xilinx IP cores provide
an AXI interface. Using AXI, different IPs can easily communicate with each
other. This section covers the basics of the AXI4 protocol to provide the
background for the platform creation described in Section 3.1. For details,
we refer to the AXI4 specification [5].

The AXI protocol describes a communication standard between a master and
a slave interface. The standard defines the following channels:

• read address

• read data

• write address

• write data

• write response

Figure 2.5 shows the channel architecture of a read transaction. Initially, the
master interface puts an address and control information about the transfer
on the read address channel. Then the slave interface sends the requested data
back over the read data channel. Figure 2.6 shows the channel architecture
of a write transaction. The master interface writes data by describing the
transfer on the write address channel. Then the master puts the data to write
on the write data channel. Finally, the slave interface informs the master
interface about the transaction status over the write response channel.

AXI defines a simple handshake protocol that uses the signals xVALID and
xREADY. The sender drives the xVALID signal to notify the receiver that the

20

2.4. AXI

Figure 2.5: AXI read channels [49]

Figure 2.6: AXI write channels [49]

payload on the channel is valid and can be read on the next clock cycle. The
receiver sets the xREADY signal when he is ready to receive the data. When
both the xVALID and xREADY are high in the same clock cycle, the payload
is transferred. The sender can now keep the xVALID signal high to send
more data or terminate the session by driving xVALID low. Using this simple
mechanism, both the sender and the receiver can control the flow of the data.

An individual data transfer is called a beat. The size of a beat is defined by the
data width of the interface, that is, the number of wires for the xDATA signal.
For example, an interface with a data width of 1024, transfers 1024 bits or 128
bytes per beat and has 1024 wires for the xDATA signal. Another important
parameter is the address width of an interface. The address width defines the
address range that an interface can access. For example, an interface with an
address width of two can access the addresses 0x0 to 0x3. Two connected
AXI interfaces must have the same data and address width to work correctly.
In some cases, we can use converter IPs to connect interfaces with different
parameters.

There are two other variants of AXI: AXI-Lite and AXI Stream. AXI-Lite is a
subset of the AXI protocol with reduced features and complexity. In AXI-Lite,
all bursts have only one beat, and all transfers use the full data width, which
can be either 32 or 64 bits. These simplifications allow AXI-Lite to remove

21

2. Background

a part of the signal and provide a register-based interface for reading and
writing to a slave device. AXI Stream is another AXI flavor that is not relevant
in this thesis.

22

Chapter 3

Implementation

The OpenCL API is specified in a set of headers and requires a vendor-
specific implementation of the complete API. OpenCL applications are not
directly linked against a specific implementation. Instead, a developer links
an OpenCL application against an Installable Client Driver (ICD) loader. This
mechanism allows the installation of multiple OpenCL implementations on
the same system. The ICD loader exports the OpenCL API entry points
and redirects the calls to the correct implementation. The ICD is the actual
OpenCL implementation that implements each function of the API.

With this in mind, we need the following components to add OpenCL support
to Enzian:

• OpenCL API header files

• ICD loader

• Installable Client Driver (ICD)

The OpenCL header files are available on Github [14] or as a Linux package
(opencl-headers). Multiple ICD loaders [15] [11] are available as a Linux
package, so we can easily install them on Enzian. For the Installable Client
Driver we have two options. We could either implement our own ICD or
adapt an existing one. The first option implies that we implement every
OpenCL API call. This is by no means trivial, if not impossible, in the time
frame of this thesis. Therefore, we decided to adapt an existing ICD.

There are many ICDs available, that can be divided into two categories.
The first category contains ICDs developed by device manufacturers. For
example, Xilinx has an OpenCL implementation for their FPGAs as part
of the Vitis framework. These ICDs support only devices from a specific
vendor. The other category includes community-developed ICDs, which
support devices from various manufacturers. PoCL [25], for example, is an
open-source implementation of the OpenCL standard that supports GPUs

23

3. Implementation

and CPUs from different vendors. As these ICDs support many devices, they
often lack support for vendor-specific features.

In this thesis, we evaluated two OpenCL implementations, one for each
of the above categories. From the vendor category, we chose the OpenCL
implementation from Xilinx, because Enzian has a Xilinx FPGA. From all
the community-driven projects, only PoCL seemed to be actively maintained.
Thus, we selected PoCL as the candidate for the other category.

Xilinx provides an OpenCL implementation as a part of their Vitis frame-
work. Vitis has components covering both the host part (CPU) and the device
part (FPGA) of OpenCL. The Xilinx Runtime (XRT) is responsible for the host
part and implements the complete OpenCL API. The Vitis compiler (v++)
covers the device part. This compiler takes a kernel, written in OpenCL C,
as input and creates a bitstream for the FPGA by using high-level synthe-
sis (HLS). Besides these basic functionalities, Vitis has various tools to debug
and profile accelerated applications. All these features can also be a disad-
vantage, because they make Vitis a complex piece of software. Thus, it could
be hard to understand and adapt Vitis to the Enzian platform.

PoCL, on the other hand, is not as sophisticated as Vitis, because it only
provides the host part of OpenCL. That is, it handles the OpenCL API calls
and uses a hardware abstraction layer to interact with the FPGA. Although
PoCL provides an implementation of the OpenCL API, we must still imple-
ment the hardware abstraction layer. For the device part, we need a separate
tool to convert an OpenCL kernel into a bitstream for a Xilinx FPGA. This
process is usually divided into two steps. First, an HLS tool compiles a kernel
written in a high-level language like C/C++ into Verilog or VHDL. Then,
vendor-specific tools are used to generate a bitstream from these HDL files.
In our case, we would use Vivado to generate a bitstream for the FPGA on
Enzian.

A quick survey of HLS tools revealed that only the HLS compilers from Intel
and Xilinx support OpenCL C. We could use the Intel compiler in combi-
nation with Vivado to create a bitstream, but we consider this impractical.
Thus, the only viable option for the device part is the Xilinx HLS compiler. To
summarize this approach, we would use PoCL for the host part of OpenCL
and the Xilinx HLS compiler for the device part.

After comparing both OpenCL implementations, we decided to adapt the
Xilinx Vitis framework for Enzian. The main reason for this decision was that
PoCL does not provide the device part of OpenCL. To cover this part, we still
needed the Xilinx HLS compiler. We did not find any related work which
combines PoCL with the Xilinx HLS compiler. Therefore, we preferred the
Vitis framework that combines both the host and the device part in one tool
chain.

24

3.1. FPGA Shell / Platform

In the following sections, we cover the adaption the Vitis framework to the
Enzian platform. We start with creating an FPGA shell, or platform, that is
compatible with Vitis. Then, we adapt the Vitis build tools so they produce a
host and a device binary for Enzian. Finally, we change the Xilinx Runtime
(XRT) so it can communicate with the Enzian FPGA.

3.1 FPGA Shell / Platform

Vitis creates executables for many different devices using the same application
code base. These systems often have not much in common except that a CPU
is connected to an FPGA. For example, in Alveo systems, the host application
runs on an x86 CPU, and the CPU accesses the accelerator card through PCIe.
Zynq devices, on the other hand, use an ARM processor, and the FPGA is
connected over the on-chip interconnect.

Consequently, Vitis requires detailed information about the system on which
an accelerated application is running. A platform is a container that includes
all this information. In addition, the platform contains the necessary in-
frastructure to run a kernel on the FPGA. This aspect of the platform is
comparable to an FPGA shell.

A platform consists of a hardware and a software part. The hardware part is
further divided into two sections. First, it contains the metadata of the FPGA
shell, that is, a description of the resources that are available for the kernel.
For example, the metadata defines what clocks are present or which AXI
interfaces are available for data movement. Second, the hardware platform
contains the IPs and other infrastructure necessary to run a kernel on the
FPGA. This part is the implementation of the FPGA shell, and the kernel
cannot modify these IPs. The hardware platform is created in Vivado and
exported as a Xilinx Support Archive (XSA) file.

The software platform defines the runtime environment for the host applica-
tion on the CPU. A software platform consists of one or several domains. A
domain is either a Board Support Package (BSP) for an embedded system
or an operating system with various software drivers. Usually, the software
platform is used to generate SD card images for embedded devices. As we
did not need these features for Enzian, we kept the software platform to a
bare minimum.

The following two sections describe how we created the hardware and the
software part of the Enzian platform. The Vitis compiler can then use this
platform to create host and device binaries, which we discuss later.

25

3. Implementation

3.1.1 Hardware Platform

The hardware platform is created with the Vivado Design Suite. The foun-
dation of a hardware platform is a Vivado project which include a FPGA
design for the device we want to support. Besides a working Vivado design,
Vitis requires a set of base components that are available to the kernel. An
example for such a component is an AXI interconnect that provides access to
a shared memory. These components are then added to a metadata section
of the hardware platform. The Vitis compiler parses the metadata and makes
the correct connections between the kernel and the components.

The components and the metadata of the platform are configured in the Vi-
vado IP integrator. With the IP integrator, a designer can create sophisticated
FPGA designs by instantiating and connecting IPs on a design canvas. The
output of the IP integrator is a block design. An HDL module in Vivado can
include this block design like a regular IP. Vivado automatically creates an
HDL wrapper, which can be instantiated in the HDL module. The block
design uses external ports to define the interface of the HDL wrapper. For
example, an AXI interface can be defined as an external port, and Vivado
adds this interface to the HDL wrapper. The IP integrator also has settings
to configure platform metadata, for example, to specify the default clock for
the kernel. Vivado uses

The Vivado project for Enzian already has a block design to instantiate the
Microblaze processor, which controls the ECI link. Initially, we created a
different block design to keep the platform-related changes separate from the
original design. However, Vitis supports only one block design per platform,
so we had to add the platform IPs to the existing block design. This approach
is suboptimal because it is unclear which IPs belong to ECI and which IPs
belong to the platform.

Vitis requires the following components for a hardware platform [57]:

C1 A Processing System IP block representing the host part of the system

C2 An interface to control the kernel from the host

C3 An interface for data transfer

C4 One interrupt to signal the completion of a computation

C5 One clock source that drives the kernel

These components are the minimum for a working platform. Normally,
a platform has, for example, multiple DDR channels and thus multiple
interfaces for data transfer. We now explain how these components look in a
hardware platform and how Vitis connects the platform and the kernel.

Figure 3.1 shows a platform with each of the above components. We can see
the Processing System IP (C1), in the center of Figure 3.1. Then, the control

26

3.1. FPGA Shell / Platform

Figure 3.1: Simplified model of a platform

interface (C2) is connected with the host application. The host application can
also access shared memory. Next, we see the connection between the memory
interface (C3) and shared memory. The interrupts (C4) are also wired to
the Processing System IP. The clock generator provides a clock source (C5)
for the kernel. Finally, the platform contains metadata to describe all of the
previous parts. The metadata is shown in the top left corner of Figure 3.1.

Now we examine the abstract model of a kernel, given in Figure 3.2. We
notice that the interfaces of the kernel correspond to the interfaces of the
platform in Figure 3.1. The kernel has also custom RTL logic, which does
some computation. This logic is controlled by a set of registers, that the
control interface can access.

Figure 3.2: Abstract view of a kernel

27

3. Implementation

Figure 3.3: FPGA design created by the Vitis compiler

The Vitis linker takes a platform and a kernel as input and creates a FPGA
design, as depicted in Figure 3.3. We can see that the Vitis compiler connected
the interfaces of the platform with the interfaces of the kernel. Vitis can now
create a bitstream from this design to program the FPGA. In the remaining
part of this section, we cover each component (C1-C5) in detail and explain
how we implemented them in Enzian.

C1 Processing System IP

A Processing System IP is used in designs that target the Zynq architecture.
Zynq devices are SoCs that combine an ARM CPU, called the Processing
System (PS), and an FPGA, or Programmable Logic (PL), on a single die.
The Processing System IP is a wrapper to integrate the PS into a Vivado
design. The IP provides various settings e.g. to configure the DDR controller
or to adjust the PL clocks. The IP also has AXI interfaces that can be used to
communicate with other IPs.

Figure 3.4 illustrates a Processing System IP with one AXI master interface
(1), four AXI slave interfaces (2), and an interrupt line (3). The interfaces of
the Processing System IP can be added to the platform metadata and can, for
example, be used for data transfer. Therefore, it is straightforward to create
a hardware platform for a device, if a Processing System IP already exists.
However, Enzian is not supported by Xilinx, so there is no Processing System
IP available.

28

3.1. FPGA Shell / Platform

Figure 3.4: Processing System IP block

To solve this problem, we use the fact that Vivado can add interfaces of
an arbitrary IP to the platform metadata. We have two possibilities to get
an IP with the necessary interfaces. First, we could create a custom IP for
Enzian with an interface similar to a Processing System IP. This approach is
better aligned to the platform creation instructions given by Xilinx, but the
development cycle is slower as we work with two Vivado projects, one for the
platform and one for the custom IP. Second, we could use existing IPs that
already provide the necessary interfaces. For each IP, we add the necessary
interfaces to the platform metadata, and we get similar a functionality as if we
would use a Processing System IP. By using existing IPs, we can experiment
with different designs in one Vivado project and have a quick feedback loop.
We started with the later approach to create an initial prototype.

C2 Control Interface

A platform must expose at least one AXI-Lite master interface for controlling
the kernel. Typically, a Processing System IP or an AXI interconnect provides
this interface. The host can control the kernel over a set of registers, as we
can see in Figure 3.2. For example, setting the first bit of register 0x0 to one
starts the kernel execution. The kernel makes these registers accessible over
an AXI-Lite port. Likewise, the AXI-Lite port from the platform can be used
to set registers from an application on the CPU. The Vitis linker connects the
interface of the platform with the interface of the kernel during the linking
phase (see Figure 3.3. Once this connection is established, an application on
the host can read or write to the kernel registers over the AXI-Lite bus.

In Vivado, we declared an external port in the block design and connected
this port to the AXI-Lite interface that is coming from the host. In the block
design, we added an AXI SmartConnect IP and connected the external port
to a slave port of the SmartConnect. A SmartConnect is the successor of the
AXI Interconnect IP and has better support for the IP integrator.

29

3. Implementation

Figure 3.5: Kernel control part of the block design

Next, we added the master port of the SmartConnect to the platform meta-
data, so the Vitis compiler finds this interface during the linking phase.
Before we continued with the memory interface, we wanted to check if we
created a correct block design. However, the validation did not pass and the
IP integrator produced an error.

The IP integrator complained because the master port of the SmartConnect
was unconnected. The port is later connected to the kernel during the linking
phase. However, the IP integrator expects that every interface has a valid
connection. As a workaround, we connected the master interface of the
SmartConnect to an AXI Verification IP. This IP is only used during simula-
tion and does not allocate any resources on the FPGA. Vivado automatically
assigns an address to the AXI Verification IP, so it is accessible over the
AXI-Lite interface that is coming from the CPU. As we do not use this IP
and to prevent conflicts with the Vitis linker, we disabled the path from the
AXI-Lite port to the Verification IP in the address editor of the IP Integrator.

The AXI Verification IP fixed the validation error, but we still need to add an
interface to the platform metadata. To accomplish this, we marked the next
AXI master port of the SmartConnect as the control interface of the platform.

Figure 3.5 shows the relevant parts of the block design. (1) is the AXI-Lite
interface that is coming from the CPU. The host application can later access
the control registers of the kernel over this interface. (2) is the problematic
interface that was initially unconnected. As we can see, it is now attached to
an AXI Verification IP (3). The control interface for the kernel is not visible
in this diagram. We added this interface only to the platform metadata, as
shown in Figure 3.9. We discuss this figure and the complete block design at
the end of this chapter.

C3 Memory Interface

The platform must have at least one interface that is connected to some
kind of memory. The host application on the CPU uses this memory to
exchange data with the kernel on the FPGA (shared memory). In most cases,
the CPU’s main memory is used as shared memory. Other architectures are

30

3.1. FPGA Shell / Platform

also possible. For example, the Alveo cards use the DDR on the FPGA as
shared memory. To create a valid platform, we need to add the memory
interface to the platform, similar to the control interface from the previous
section.

If we want to add a memory interface to the Enzian platform, we have to
decide which memory should be shared between the CPU and the FPGA. The
CPU, as well as the FPGA, have access to their own DRAM subsystems. We
have also block memory in the FPGA, but it is not suitable for this purpose
because of the limited storage capabilities. The ideal platform would provide
access to both the CPU and the FPGA DRAM. The Vitis linker could then
pick the best memory based on the accelerated application and connect the
kernel accordingly. However, for an initial prototype, we focus on a single
shared memory.

There are two different systems to access memory on Enzian. The first system
is Enzian DMA, which allows the FPGA to access the CPU DRAM coherently.
The CPU can obviously access its DRAM, so we have a memory that both the
CPU and the FPGA can access. The second system is the Enzian Directory
Controller. The directory controller is implemented in the FPGA fabric and
has three interfaces. The first interface takes memory requests from the CPU,
the second interface handles requests from the FPGA, and the third interface
is attached to a byte-addressable memory, for example, the DDR memory
controller on the FPGA. With this system, it would be possible to use the
FPGA DDR as shared memory. Unfortunately, the FPGA interface of the
directory controller was missing at the time of writing. As only the CPU can
access the FPGA memory with the directory controller, we cannot exchange
data between the host application and the kernel. For that reason, we use the
Enzian DMA system for memory transfers and the CPU DRAM as shared
memory.

The Enzian DMA system is implemented in the module eci_dma in the
Enzian Vivado project. Figure 3.6 shows the architecture of the module.
A memory transfer is initiated at the right side of the diagram. The block
Debugging has VIOs to create a read or write description of a memory transfer.
In addition, the debugging module contains ILAs to visualize the data or the
status of a transfer. To start a memory transaction the debugging module
sends a read or write descriptor to the axi_dma module. The axi_dma module
converts the descriptor into signals for the AXI bus that leaves the axi_dma

module on the left side. The AXI signals are then split between two modules.
Read requests go to the module axi_eci_rd_slv, and write requests are
handled by axi_eci_wr_slv. Both modules convert an AXI request into an
ECI package and send the package over the Enzian Coherent Interconnect to
the memory system of the CPU.

31

3. Implementation

Figure 3.6: Enzian DMA architecture

The previous section described the transmission of read/write descriptors,
but the debugging module sends or receives the actual data over an AXI-
Stream interface, shown in the lower right part of Figure 3.6. The axi_dma

module converts the AXI-Stream interface into a standard AXI interface.
Then, the data is forwarded by either axi_eci_rd_slv or axi_eci_wr_slv

to ECI and, finally, to the memory system of the CPU.

To add a memory interface to our platform, we could remove the debugging
module and use the AXI-Stream port on axi_dma to access the CPU memory.
This approach requires that Vitis supports the AXI-Stream protocol for plat-
form memory interfaces. Vitis supports AXI-Stream as a platform memory
interface, but with some limitations.

Looking at Figure 3.6 again, we can see that the left side of axi_dma is
connected to a standard AXI interface. This interface is indicated as AXI in
the middle of Figure 3.6. Standard AXI interfaces are fully supported by Vitis,
so this interface is exactly what we need. Consequently, we can remove the
axi_dma module because we do not need the AXI-Stream to AXI conversion.

Now that we have a suitable AXI port for the memory interface, we need
to bring the AXI port into the block design. Like for the control interface,
we can add an external port to the block design and attach the AXI port
to it. Then, we added an additional SmartConnect to the block design and
connected it to the external port.

Figure 3.7 shows the complete path of the memory interface from the CPU
to the kernel. The diagram is divided into two parts. On the left you can see
the eci_dma module and on the right we have the block design. If the kernel
wants to access a memory location in the CPU DRAM, it sends a memory
request to the SmartConnect. Then, then SmartConnect forwards the request,
over the external port, to the eci_dma module. Inside the eci_dma, the

32

3.1. FPGA Shell / Platform

Figure 3.7: Path of the memory interface from the CPU to the kernel

request goes either to axi_eci_rd_slv or axi_eci_wr_slv and is forwarded
to the CPU over ECI. The arrow between the SmartConnect and the kernel,
is the memory interface (see C3 in Figure 3.1).

Similar to the control interface, we also added an AXI Verification IP to
prevent the issue with the unconnected port. A kernel can now send read
and write requests to the CPU DRAM to access the shared memory.

During our experiments, we discovered a bug in the Enzian DMA subsystem,
which changed the order of the cache lines in a read response. As long
as the FPGA writes to a memory location in DRAM and reads the value
back, everything works as expected. However, if the CPU writes a value
to a memory location and the FPGA reads that memory location, the value
is incorrect. As a simple example, let us assume that the CPU writes two
cache lines into its DRAM. The FPGA reads the first cache line and gets the
correct result. Now, if the FPGA tries to access the second cache line, Enzian
DMA returns the value of the first cache line. This problem occurs most
likely because the responses from the CPU over ECI are out of order. We did
not investigate this problem further because there is an improved version of
Enzian DMA in the Coyote project [29]. This version is more sophisticated
than the initial version of Enzian DMA because the implementation is fully
pipelined. Furthermore, the Coyote version is well-tested and has already
been used in other projects. To fix the cache line bug, we integrated the Enzian
DMA version of Coyote into our implementation, which was straightforward
as the module interface did not change. The Enzian DMA module from
Coyote fixed the bug and increased the throughput of Enzian DMA due to
the pipelining.

Figure 3.8 shows the memory interface section of the block design. The
design is similar to the control interface in the previous section and has

33

3. Implementation

Figure 3.8: Memory interface part of the block design

again a SmartConnect and an AXI Verification IP. The SmartConnect has
the memory interface that we added to the platform metadata. The AXI
Verification IP fixes the problem with the unconnected ports. The directions
of the AXI ports are now reversed. The external port gmem_AXI is an AXI
slave port instead of an AXI master port like in the control interface part. The
ports use the full AXI protocol and are not just AXI-Lite ports, but this is not
visible in this figure.

C4 Interrupt

The Vitis documentation states that at least one interrupt signal is required for
a valid platform. The kernel uses an interrupt to notify the host application
about the completion of a computation.

Enzian has an interrupt line that goes from the FPGA to the CPU, but this
part has not been tested very well, and we found little documentation about
interrupts on Enzian. During our experiments, we discovered that interrupts
are not a mandatory requirement for a platform. The scheduler of the host
application falls back to polling if no interrupts are available on the platform.
We did not include interrupts for our initial prototype, but they can be easily
added in a future release of the platform.

C5 Clock

A platform requires at least one clock that is enabled in the metadata. It
is also possible to create a platform with more than one clock. The Vitis
linker can then pick a suitable clock to drive the kernel. If multiple clocks
are enabled, the platform must define one default clock.

Enzian has a 300 MHz clock that comes directly from the board and drives
most of the system. There is also a 50 MHz clock for the Microblaze processor.
We used the 300 MHz clock to achieve optimal performance. We added the
clock over an external port to the block design and enabled it in the platform
metadata. Vitis 2020.1 has a known issue, that occurs when only one clock is
enabled in the platform. With only one clock in the platform, the Vitis linker
cannot write the correct clock information into the device binary. We added a

34

3.1. FPGA Shell / Platform

second dummy clock to the platform to fix this problem. The dummy clock is
connected to the same wire as the default clock and is not used by the kernel.
With this issue resolved, we successfully added a clocking infrastructure to
the platform.

Block Design

This section describes the metadata section and the complete block design of
the Enzian platform.

The metadata is configured in the Platform Interfaces tab of the IP integrator.
Figure 3.9 shows the enabled interfaces of the platform. We enabled two
clocks, clk sys and clk sys dummy, in the External Interfaces section. Further,
we can see the control interface, which is labeled M02 AXI. Below the control
interface, is the memory interface (S02 AXI). Vivado includes this metadata
when it creates the platform file.

Figure 3.10 shows the complete block design of the Enzian platform. The
part of the block design that is responsible for controlling the ECI link is not
shown. We can see that most of the previous components are present, except
for C1 and C4. The control interface part is indicated by C2, whereas the
memory interface is shown in C3. Then, the two clocks are labeled with C5.
The Vitis linker can now use this design to connect the kernel to the correct
interfaces. We added a kernel (K) to Figure 3.10 to illustrate this. There are
still unconnected ports on the kernel, for example, the interrupt port, but
they are not required for a working platform.

Figure 3.9: Platform Interfaces tab of the IP integrator

35

3.
I
m

p
l
e
m

e
n

t
a

t
i
o

n

Figure 3.10: Final block design with an example kernel

36

3.2. Vitis Build Tools

Export the hardware platform

The last step to create a hardware platform is to export the design from
Vivado and save it in an XSA file. The platform can be exported with the
following TCL command:

write_hw_platform -unified <output.xsa >

This command generates the XSA file that contains all the necessary parts to
create a platform for Vitis. The remaining steps to create a platform are done
in the Vitis IDE and are discussed in the next section.

3.1.2 Software Platform

A software platform consists of one or several domains. A domain defines the
environment in which the host application is running. The runtime environ-
ment includes various drivers and libraries required by the host application.
These software packages are either included in a BSP for embedded systems
or are provided as part of an operating system, for example, in a server
environment with Alveo accelerator cards.

Every aspect of the software platform can be configured in the Vitis IDE or
with the Xilinx Software Command-Line Tool (XSCT). The Systems group
has already created a project for the Vitis IDE. The project includes a domain
for the Microblaze CPU. This domain provides the necessary libraries for the
program that brings up the ECI link.

In addition to the Microblaze domain, we need a domain for the runtime
environment of the host application. The host application runs in Ubuntu
on the ThunderX CPU. Vitis has no official support for custom platforms
with such an architecture, although this is a setup similar to the Alveo cards.
Therefore, we did not add a domain for the ThunderX and installed the
required libraries manually on Ubuntu (see Section 3.3.1).

To create the software platform for Enzian, we imported the XSA file that
contains the hardware platform into the Vitis IDE and followed the instruc-
tions to add the Microblaze domain. After building the project, we had a file
(*.xpfm), that contains both the hardware and the software platform.

In the next section, we discuss how Vitis uses the platform file to create a
host and a device binary.

3.2 Vitis Build Tools

This section covers how we adapted the Vitis build process to support the
Enzian platform. In the best case, the build tools work without any changes by
just using the Enzian platform file from the previous section. Unfortunately,

37

3. Implementation

the tools did not produce the expected output, and we had to make changes
at specific points of the build process. We tried to keep these modifications
to a minimum so that the tools work as if Enzian were supported by Vitis.

The build process follows two separate workflows. One workflow builds the
device binary with the Vitis compiler. The other workflow creates the host
application with the GNU compiler collection. We discuss how we adapted
each workflow in the following two sections.

3.2.1 Device Binary

Vitis includes a compiler, called v++, to build the FPGA binary. This section
covers how we adapted v++ to support the Enzian platform. Section 2.3.1 has
a detailed description of the build process.

The Vitis compiler requires a source file of a kernel and a platform file to
create a device binary. We already had a platform file from the previous
section, but we still needed a kernel to run the build. We opted for a simple
kernel, called vadd, that takes two vectors as inputs, performs a vector
addition, and writes the result to a third vector. Listing 3.1 shows the source
code of the initial version of the vadd kernel.

Listing 3.1: Initial version of the vadd kernel

void vadd(

int *in1 , // vector 1

int *in2 , // vector 2

int *out , // result

int size // vector size

)

{

for(int i = 0; i < size; ++i)

{

out[i] = in1[i] + in2[i];

}

}

Even for such a simple kernel, we had to make several changes to the code
and the build process, to run this example on Enzian. The first set of changes
were necessary during the compilation of the kernel. The second set of
changes were applied to the linking phase. We go over each set of changes
separately.

38

3.2. Vitis Build Tools

Compile Phase

During the compile phase, v++ creates a Xilinx object file from a kernel source
file. We used the following command to compile the vadd kernel:

v++ -c -t hw --platform enzian.xpfm -k vadd

-o vadd.xo ./vadd.cpp

This command did not complete successfully and produced an error. The
Vitis compiler was not able to assign a memory interface to the argument
in2.

The Enzian platform provides only one AXI memory interface for the kernel.
The AXI protocol allows only one read and one write simultaneously. How-
ever, inside the loop body in Listing 3.1, the kernel reads in1[i] and in2[i]

at the same time. This results in two concurrent read requests. Usually, the
Vitis compiler assigns one of the conflicting arguments to another memory
interface. Unfortunately, this does not work for the Enzian platform because
it has only one memory interface. Thus, the compiler produces an error and
aborts the build.

There are two solutions to this problem. Firstly, we could extend the Enzian
platform with additional memory interfaces, which allows the Vitis compiler
to assign the arguments correctly. Secondly, we could change the source code
of the vadd kernel to avoid these two concurrent write requests.

Suppose we want to add an additional memory interface. In that case, we
need to divide the CPU address space and assign a separate address range to
each interface. In addition, the host application must allocate the memory for
an argument in the correct address range. In summary, adding an additional
interface is too much effort for an initial prototype.

Instead, we removed the concurrent read by adding an integer constant
instead of a value from a vector. Now we have only one read in the loop
body. The revised version of the vadd kernel is given in Listing 3.2.

Listing 3.2: Revised version of vadd without concurrent reads

void vadd(

int *in , // input vector

int *out , // result vector

int size // vector size

)

{

for(int i = 0; i < size; ++i)

{

out[i] = in1[i] + 42;

}

}

39

3. Implementation

With this new version, the Vitis compiler builds the vadd kernel successfully
and produces a Xilinx object file.

Before we passed the object file to the linker, we checked if the Vitis compiler
created the correct AXI interfaces. As mentioned in Section 2.3.1, a Xilinx
object file is a regular zip archive with a different file extension (*.xo). The zip
archive contains an IP and some metadata. This IP represents the kernel logic
in HDL and can be included in a Vivado project like any other third-party IP.

To examine the vadd kernel, we created a new block design in a Vivado
project and added the IP. Figure 3.11 shows the IP of the vadd kernel with
its AXI interfaces. The control interface is on the left side and is called
s_axi_control. The memory interface is on the right side and labeled
m_axi_gmem. The memory interface is a full AXI port whereas the control
interface is a AXI-Lite port. Note that the memory interface has more wires
as the control interfaces because AXI-Lite uses only a subset of the AXI wires.
We omitted the irrelevant wires of the memory interface for clarity.

If we want to connect the AXI ports of the kernel IP in Figure 3.11 with AXI
ports of the Enzian platform, certain requirements must match. The two
essential requirements are the address width and the data width. The address
width defines the number of wires of the AxADDR signal and with that the
address range of the port. For example, the control interface in Figure 3.11
has six wires for the s_axi_control_AWADDR signal. This corresponds to an
address width of six so the port can access the addresses from 0x0 to 0x63.
The data width, on the other hand, defines the word size of the port. If we
look at the s_axi_control_RDATA signal in Figure 3.11, we can see it has
32 wires or a data width of 32. This means that each data transfer (beat)
transmits 32 bits of data. We refer to Section 2.4 for details about the AXI
protocol.

In the following sections, we compare the interfaces of the kernel IP with the
interfaces of the Enzian platform and address all inconsistencies. All relevant
signals are highlighted in Figure 3.11.

The Enzian platform imposes two requirements to the control interface and
the memory interface. First, the address width for both interfaces must be
at least 40-bit. The ECI protocol dictates this address width. Second, there
is a restriction on the data width. The data width of the control interface
must be 64 bits because the ThunderX CPU has the same word size. The data
width of the memory interface must be 1024 bits. This restriction is given by
the Enzian DMA module. Enzian DMA can only read or write at cache line
granularity and a cache line has 1024 bits [42].

Irrespective of the Enzian requirements, Vitis has its own default values
for the kernel interfaces. As Figure 3.11 shows, the default address width
of the kernel control interface is six (see s_axi_control_AxADDR). Six wires

40

3.2. Vitis Build Tools

Figure 3.11: Initial IP of the vadd kernel

are enough to to address all control registers. Vitis only supports 32-bit
platforms, i.e., a word size of 32. Therefore, the data width of the control and
the memory interface is 32 by default. This matches with the kernel IP in
Figure 3.11. The signals s_axi_control_WDATA and s_axi_control_RDATA of
the control interface have both 32 wires. Similarly, for the memory interface
where only the signal m_axi_gmem_WDATA is shown. Actually, Vitis does not
always set the default data width to 32. The data width of the memory
interface depends on compiler optimizations and can vary from 32 up to 512
bits.

Comparing the requirements of Enzian with the Vitis default settings, reveals
three problems. The first issue is the data width of the control interface.
While Enzian requires a data width of 64, Vitis has a default data width of

41

3. Implementation

32. A mismatch in the data width means wrong values in the kernel control
registers and unexpected behaviour of the kernel.

The second problem is the address width of the memory interface. Vitis
created a 32-bit wide address port, but 40 bits are required to access all
addresses on the ThunderX. In the worst case, the MSB bits of an address
are truncated by the 32-bit address width of the memory interface and the
kernel accesses a wrong memory location. The address width mismatch of
the control interface is not an issue, because all control register addresses can
be represented by the 40-bit address width of the Enzian platform.

The last issue is the data width of the memory interface. Enzian can only
write cache lines and requires a data width of 1024 bits. Vitis, on the other
hand, varies the data width of the kernel based on compiler optimizations.
Again, a data width mismatch means, that values end up at the wrong
memory location or dead locks occur. All of these problems need to be
resolved to successfully run the vadd kernel on Enzian.

The first two issues, the data width mismatch of the control interface and the
wrong address size of the memory interface, have a straightforward solution.
For the last problem, the data width mismatch of the memory interface,
exists multiple solutions each with their own pros and cons. We discuss these
solutions in Section 3.2.1. In the remaining part of this section we present
our solution for the first two problems.

As discussed previously, the Vitis compiler calls Vitis HLS under to hood to
convert the kernel source, for example written in C/C++, into an IP. If we
want to change the kernel interfaces, we need to influence the high-level syn-
thesis of the kernel. Vitis HLS has various configuration commands to control
the results of the synthesis [63]. The command config_interface specifies
the options for the IP interfaces. Among these options, s_axilite_data64
and m_axi_addr64 are particularly interesting. Both options take true or
false as inputs, which enables or disables the option respectively. The first
option (s_axilite_data64) sets the data width of the kernel control port to
64 bit. The control port of the kernel has now the same data width as the port
of the Enzian platform. The second option (m_axi_addr64) globally enables
64-bit addresses for all memory ports of the kernel. The documentation states
that this option is enabled by default in the Vitis flow, but we did not observe
that. Anyway, enabling this option creates a kernel with the correct address
width for the Enzian platform.

Figure 3.12 shows the kernel IP with the correct interfaces. As we can see,
the signals s_axi_control_WDATA and s_axi_control_RDATA have now 64
wires, so this matches with the data width of the Enzian platform, which is
also 64. Next, we see that the address width of the memory interface has
also changed to 64 bits (see m_axi_gmem_AWADDR). This corresponds with the
address width of the Enzian platform. Finally, the data width of the memory

42

3.2. Vitis Build Tools

Figure 3.12: vadd kernel IP with correct interfaces

interface has increased to 1024 (see m_axi_gmem_WDATA). The data width of
the memory interface is now equal with the cache line size of the ThunderX.
This ensures that the kernel writes only complete cache lines which was
required by Enzian. Section 3.2.1 discusses how we changed the data width
of the memory interface.

The previous options solve the first two problems, but we still need to
pass them to Vitis HLS during the build. The Vitis compiler has the flag
--advanced.prop solution.hls_pre_tcl, that takes a path to a Tcl script.
The script runs before the high-level synthesis. Thus, we can use this script
to enable the two options, we discussed in the previous section. With this
script the Vitis compiler runs without any manual intervention and creates a
Xilinx object file.

43

3. Implementation

Linking Phase

During the linking phase, the Vitis compiler takes Xilinx object files and
a platform as input and links them together to produce the device binary
(*.xclbin). We used the following command to link the vadd kernel from
the previous section and the Enzian platform:

v++ -l -t hw --platform enzian.xpfm -o vadd.xclbin \

./vadd.xo

The linker goes through several steps to produce the device binary. It starts
with extracting the platform file and it generates a Vivado project from
these files. Next, the linker adds the kernel to the block design. Then, the
kernel interfaces are linked to the platform interfaces. In addition, the linker
assigns addresses to certain slave interfaces. At this stage, the block design
is complete and the linker goes through synthesis and implementation to
generate a bitstream. When the bitstream is ready, the linker generates
metadata for the runtime environment and packages the bitstream and the
metadata in a device binary, or xclbin file.

The linking process can be interrupted at any of the above steps. This is
especially useful for debugging or for making manual changes to the FPGA
design. The Vitis compiler has the option --to_step to run the linking up
to a certain step. Once the linker is interrupted, we can open the Vivado
project which the linker has created. The Vivado project file is in the folder
_x/link/vivado/vpl/prj/ relative to the build directory. Then, we can edit
the FPGA design like in a normal Vivado project. After we completed our
changes, we can continue the linking process with --from_step.

In our first test build, the linker run without any errors and produced a xclbin
file. However, the kernel did not work in hardware because it was unable to
read any input data. To debug this problem, we interrupted the linker after
the block design was updated (--to_step vpl.update_bd). We examined
the memory interface of the Enzian platform, in particular the address range.
The linker connected the kernel interface correctly to the platform interface
and all AXI parameters for both interfaces were correct. However, we noticed
that the linker assigned a wrong address range to the platform memory
interface. The AXI interconnect routes the AXI signals based on this address
range to the correct interface. The interconnect drops all requests that have
an address outside of an address range. Consequently, if the address range
of the memory interface is incorrect, the AXI interconnect rejects memory
requests from the kernel and the requests are never sent to the ECI.

The linker assigned a random start address to the platform memory interface
and the size of the address range was only 64 kilobytes. We decided to give
the kernel full access to the CPU address space. Accordingly, we defined an
address range that starts at address 0x0 and ends at the last representable

44

3.2. Vitis Build Tools

address. Giving full access is not desirable from a security perspective, but
we wanted to keep the design simple for this initial prototype.

The documentation does not describe how the linker assigns these address
ranges. Thus, we tried to reverse engineer the address assignment process but
we were not successful. Instead, we manually assigned the correct address
range to the platform memory interface. Later, we automated this assignment
with a custom Tcl script. The script made it possible to run the build process
without any manual interventions. We passed this script with the option

param=compiler.userPostDebugProfileOverlayTcl=

fix_address.tcl

to the Vitis compiler, which is given in Listing 3.3.

Listing 3.3: Tcl script to assign the correct address range

set addr_seg [get_bd_addr_segs \

{vadd_1/Data_m_axi_gmem/SEG_gmem_AXI_Reg }]

set_property offset 0x0000000000000000 addr_seg

set_property range 16E addr_seg

The first two lines save the address range, or address segment, in the variable
addr_seg. The third line sets the start address to 0x0. The last line extends
the address range to the maximum value. The script includes the name of
the kernel, as you can see on the second line (vadd_1) of Listing 3.3. The
kernel name is usually different from application to application, so we have
to adapt this script for each new application that we develop for Enzian. It
would, therefore, be interesting future work to fully reverse engineer the
address assignment of Vitis and to adapt the Enzian platform file so that the
addresses are assigned correctly.

Up to this point, we solved two problems that prevented the Vitis compiler
to create a correct device binary. The first problem from the previous section
was a mismatch between the address and data width of the kernel and the
platform interface. The second problem occurred during the linking phase,
where the linker assigned wrong addresses to the memory interface of the
platform. We solved both problems with custom scripts that make the build
process compatible with Enzian. There is still the problem with the data
width of the memory interface and we discuss several solutions for this
problem in the next section.

Data Width Conversion

As mentioned before, Enzian DMA can only read or write at cache line
granularity (1024 bits). This requirement simplifies the implementation of
Enzian DMA significantly but implies that the data width of the AXI interface

45

3. Implementation

is 1024. The AXI interface of the kernel has also a specific data width. For
example, the vadd kernel has a data width of 32 because the kernel arguments
are 32-bit integer arrays. To connect the AXI interface of Enzian DMA with
the AXI interface of the kernel, we used a SmartConnect, as described in the
previous sections.

Note that both interface have a different data width. However, the AXI
standard requires that the data width of two connected interfaces must
match. Hence, the SmartConnect has to insert some logic to convert the data
size. In the case of our vadd kernel, the SmartConnect needs to convert the
32-bit data width of the kernel to the data width of Enzian DMA which
is 1024. The logic to convert the data sizes is called AXI Downsizer or AXI
Upsizer respectively. The SmartConnect documentation [55] describe the data
width conversion in detail but in our case it is sufficient to know that some
transformation is ongoing.

Figure 3.13 summarizes the whole setup with the vadd kernel as an example.
On the left, we can see the vadd kernel that is connected to the SmartConnect.
Similarly, the Enzian DMA module is connected to the SmartConnect as well
as to the Enzian Coherent Interconnect. The data width of both connections
is shown in the figure. The AXI Upsizer inside the SmartConnect handles
the data width conversion.

During our initial hardware tests, we observed incorrect results from the vadd
kernel. We found that the incorrect results were caused by the data width
conversion of the SmartConnect. The SmartConnect padded the remaining
bits with zeros and sent a 1024-bit request for each 32-bit request. This
behaviour produced many requests to the Enzian DMA and the design did
not work correctly. Therefore, we need to increase the data width of the
kernel to reduce the number of requests.

There are three approaches to increase the data width of the kernel. Firstly,
we can use a special type for the kernel arguments. This type statically
defines the data width of the kernel AXI interface. Secondly, we can change
the data width with a custom script that is similar to the script in Listing 3.3.
Lastly, we could use compiler optimizations to increase the data width. In
the remaining part of this section, we cover each solution separately.

Figure 3.13: Block diagram that illustrates the data width issue

46

3.2. Vitis Build Tools

Kernel Argument Type The types of the kernel arguments define the AXI
memory interface of a kernel. In particular, the number of bits of a native
C/C++ type determines the data width of the AXI interface. For example,
the vadd kernel has two arrays of type int as kernel arguments. An int

value has 32 bits in C/C++, so Vitis HLS creates an AXI interface with a data
width of 32.

The native C/C++ types are on 8-bit boundaries (8, 16, 32 and 64 bits) but
an FPGA supports arbitrary bit lengths for arithmetic operations. Vitis HLS
provides arbitrary precision types for C++ to specify types with arbitrary bit
widths [52]. For example, if we want to multiply two 20-bit integers, we do
not need a 32-bit multiplier. Instead, we can use an arbitrary precision type
to specify that only 20 bits are used in the calculation.

With this in mind, we can use arbitrary precision types to specify the data
width of the AXI interface. Listing 3.4 shows a version of the vadd kernel
that uses arbitrary precision types.

Listing 3.4: vadd kernel with arbitrary precision types

#include <ap_int.h>

typedef ap_int <1024> enzian_int;

void vadd(

enzian_int *in,

enzian_int *out ,

int num_blocks

)

{

for(int i = 0; i < num_blocks; ++i)

{

out[i] = in1[i] + 42;

}

}

To use arbitrary precision types, we must include the ap_int.h header file
that is provided by XRT. Then, we define a new type called enzian_int.
This type has a bit-width of 1024 which is equal to the cache line size. We
use this type for the kernel arguments that define the input and output
arrays. Instead of passing the vector size to the kernel, we use the last kernel
argument to specify the number of blocks that the kernel needs to process.
One block is equal to a cache line and contains 32 int values. Therefore, the
kernel performs 32 additions per loop iteration. The number of blocks is
calculated by the host application and passed to the kernel.

47

3. Implementation

Figure 3.14: IP options of the vadd kernel

The enzian_int type has 1024 bits so Vitis HLS creates an AXI interface with
a data width of 1024. Now the kernel and Enzian DMA have the same data
width so the SmartConnect does not include any upsizer logic. This solves
the problem with the wrong data width conversion.

Arbitrary precision types are only available for C++ kernels. For OpenCL C
kernels, we can use OpenCL Vector Data Types [17] that provide a similar
functionality. The type long16 represents a vector of 16×64-bit integer values.
Conveniently, this data type has 1024 bits which is the required data width
of the AXI interface.

Custom Script While we were debugging the address assignment issue in
Section 3.2.1, we discovered another approach to change the data width of
the kernel AXI interface.

As we described previously, the Vitis linker creates a block design that
includes the kernel as a regular IP. This IP provides an option to change the
data width of the AXI interface, as you can see in Figure 3.14. We can use
the drop-down menu to set the data width to 1024 bits and Vivado creates a
corresponding AXI interface. Now the kernel IP has the same data width as
Enzian DMA and the SmartConnect can again omit the AXI upsizer.

48

3.2. Vitis Build Tools

This approach is not documented by Xilinx and can result in unexpected
behaviour. Nevertheless, we successfully used this method for the matrix-
matrix multiplication benchmark in Section 4.2.

Compiler Optimizations The last option uses compiler optimizations to
increase the data width of the AXI interface. Vitis has two modes to transfer
arrays to the kernel [58]:

• Individual data transfer

• Burst data transfer

With individual data transfers, the kernel reads or writes a single element
per address. For example, Listing 3.5 shows a kernel that performs a single
read and a single write operation.

Listing 3.5: Individual data transfer

void single(int *d) {

static int acc = 0;

acc += *d;

*d = acc;

}

The synthesised logic generates an address on the AXI interface to read a
single value and an address to write a single value. The AXI interface has
a data width of 32 because the kernel argument has type int. Hence, the
interface transfers one 32-bit value per address.

With burst data transfers, the kernel reads or writes multiple consecutive
values starting from a base address. Burst data transfers allow the compiler to
increase the data width of the kernel because multiple read or write requests
can be bundled together. Burst mode is possible if the kernel uses the memcpy

function or a pipelined for loop. We prefer memcpy because pipelining a loop
is not always possible.

Listing 3.6 shows a version of the vadd kernel which uses memcpy.

Listing 3.6: vadd kernel with memcpy

#include <string.h>

#define BUF_SIZE 32

void vadd(int *in , int *out , int n_elements){

int buf[BUF_SIZE];

for (int i = 0; i < n_elements; i += BUF_SIZE) {

memcpy(buf , in + i, BUF_SIZE * sizeof(int));

49

3. Implementation

for (int j = 0; j < BUF_SIZE; j++)

buf[j] += 42;

memcpy(out + i, buf , BUF_SIZE * sizeof(int));

}

}

In each outer loop iteration, we copy 32 integers from the input vector to
an internal buffer, called buf. Then, we add a constant to each element of
the buffer. Finally, we copy the buffer back to the output array. The calls
to memcpy are translated into burst transfers. Therefore, the compiler can
increase the data width of the vadd kernel. In this example, the data width
was increased to 512 bits. This still requires an upsizing of the data width
to 1024. In contrast to the upsizing from 32 to 1024, we could not observe
invalid behaviour of the upsizer logic when upsizing from 512 to 1024.

3.2.2 Host Binary

After we successfully created a device binary, we also need a host application
to run the vadd kernel. The host application uses the OpenCL API to discover
the available devices, to allocate buffers for data exchange and to finally
execute the kernel.

Listing 3.7 shows an excerpt of the host application which runs the vadd

kernel.

Listing 3.7: Host application for the vadd kernel

// Step 1: Initialize the OpenCL environment

cl:: Device device = ...;

cl:: Context context(device);

cl:: CommandQueue q(context , device);

cl:: Program program(context , devices , xclbin);

cl:: Kernel krnl_vector_add(program , "vadd");

// Step 2: Create buffers and initialize test values

cl:: Buffer in_buf(context , CL_MEM_READ_ONLY , size);

cl:: Buffer out_buf(context , CL_MEM_WRITE_ONLY , size);

int *in = (int *)q.enqueueMapBuffer(...);

int *out = (int *)q.enqueueMapBuffer(...);

for(int i = 0 ; i < size; i++){

in[i] = i;

out[i] = 0;

}

50

3.2. Vitis Build Tools

// Step 3: Run the kernel

krnl_vector_add.setArg(0, in_buf);

krnl_vector_add.setArg(1, out_buf);

krnl_vector_add.setArg(2, size);

q.enqueueMigrateMemObjects ({ in_buf}, ...);

q.enqueueTask(krnl_vector_add);

q.enqueueMigrateMemObjects ({ out_buf}, ...);

q.finish ();

...

The host application goes through three steps to run the vadd kernel. First,
the application initializes the OpenCL environment. Several API calls are
necessary to obtain a reference to a device, the FPGA accelerator in this
case. We omitted this part because platform and device discovery is already
discussed in Section 2.1.1. Using the device reference, we create an OpenCL
context and a command queue. Then we load device binary (*.xclbin)
and create a program object. From the program, we get a reference to the
vadd kernel. These were all API calls to create an OpenCL environment.
Second, the host application allocates a buffer by creating a cl::Buffer

object. The host application cannot access a buffer directly, so we have to
map the buffer into the host address space with a call to enqueueMapBuffer.
This function returns a pointer to the buffer and we can initialize the test
data. Finally, the third step executes the kernel. The host application assigns
the buffer and the size of the vectors to the kernel arguments. Then a call to
enqueueMigrateMemObjects transfers the input vector and the data size to
the kernel. Then, the host application calls enqueueTask to run the kernel.
After the execution, the result is transferred back to the host again with
enqueueMigrateMemObjects. Because the OpenCL API is asynchronous, we
have to call finish to wait until every command is finished.

Unlike the device binary build, there were no changes necessary to compile
the host application. We compiled the host application like a regular C++
program, as discussed in Section 2.3.2. We run the compilation directly on
Enzian because the GNU compiler collection was already installed and we
wanted to avoid cross-compilation. We used the following command to
compile the host application:

g++ -Wall -g -std=c++14 -lOpenCL -lpthread -lrt

-lstdc++ -o host.exe host.src

51

3. Implementation

The library OpenCL is provided by XRT which we cover in the next section.
The other libraries are shipped with Ubuntu 20.04.

This section concludes our discussion about the build process of the vadd ker-
nel. We used the Vitis compiler (v++) to create a device binary (vadd.xclbin).
Then, we compiled the host application with GCC (g++) and got the host
binary host.exe. In the next section, we discuss our changes to the Xilinx
Runtime (XRT) and how we run the vadd kernel with XRT.

3.3 Xilinx Runtime (XRT)

The Xilinx Runtime (XRT) is the execution environment for the host appli-
cation. At the beginning of this section, we describe how we built XRT, and
installed it on Enzian. Next, we summarize the steps of our initial hard-
ware test. During this test, we manually interacted with the kernel without
XRT. Finally, we run a kernel using the whole XRT stack. This experiment
demonstrates the first execution of a simple OpenCL application on Enzian.

3.3.1 Cross Compilation

The XRT source code is available on GitHub [65] and the documentation [64]
has instructions for building the software stack. XRT uses the CMake build
system. The user space libraries, the kernel drivers and the command line
tools are all built from the same repository. The output artifact of the build is
an RPM or a Debian package.

With these packages, we can install the user space libraries and the command
line tools to the correct folders on Linux. During the compilation of a host
application, GCC automatically locates the XRT libraries and links them with
the host application.

The drivers are installed with Dynamic Kernel Module Support (DKMS).
DKMS is a framework that helps installing drivers that live outside the
kernel source tree. The driver source code is included in the RPM or Debian
package. During the package installation, the driver is compiled with the
installed Linux header files. This mechanism prevents the redistribution of a
package when a new kernel version had been released.

The ThunderX CPU on Enzian has an ARM architecture, so we need to
compile XRT for the ARM instruction set. We have two options to build
XRT for ARM. We could either build XRT directly on Enzian or we use a
cross-compiler on a x86 system.

We decided to cross-compile XRT on the internal build server because the
ThunderX has a poor single-core performance. XRT already supports ARM
cross-compilation because edge devices also have an ARM processor. There is

52

3.3. Xilinx Runtime (XRT)

the script build/cross_compile.sh in the XRT repository to start the ARM
build process. We executed this script and the build produced the desired
artifacts.

Enzian runs Ubuntu 20.04, so we can install XRT with the Debian package
that was created during the build. The Debian package is in the folder
build/Enzian_aarch64/. We deployed the package with rsync to Enzian
and installed it with the following command:

sudo apt install --reinstall ./xrt_*.deb

After installing XRT on Enzian, we had an environment to compile host
applications and to run Vitis accelerated applications.

3.3.2 Initial Hardware Test

For our first experiment, we wanted to run the vadd kernel from Section 3.2.1.
The vadd kernel adds a constant number to an input vector and writes the
result to an output vector.

XRT is a complex software stack with user space code interacting with a
kernel driver. Therefore, we did not run the vadd kernel directly with XRT
for an initial test. Instead, we inferred the necessary steps to run a kernel
from the XRT source code. These steps are listed below:

• Program the FPGA with the bitstream from the device binary (xclbin)

• Allocate a buffer for the input and output vector

• Set the buffer addresses and the vector size as kernel arguments

• Start the execution

• Read and verify the result of the computation

We executed each of the above step manually to fully understand the exe-
cution of the kernel. After, we verified that the interaction with the kernel
works as expected, we did a second experiment where we run the kernel
using the complete XRT software stack. This experiment is discussed in the
next section. In this section, we describe each of the previous steps.

Program the FPGA

Before we can start interacting with the kernel, we need to program the
FPGA with a bitstream. Usually, XRT extracts the bitstream from the device
binary and uses an ioctl system call to pass the bitstream to the Linux driver.
Then, the driver programs the FPGA using the Linux FPGA subsystem[9].
Programming the FPGA like this is preferable, but we cannot use the FPGA
subsystem because it does not support the Enzian FPGA.

53

3. Implementation

Instead, we used the Hardware Manager in Vivado to program the FPGA.
This approach is not optimal because we have to open Vivado each time we
run an accelerated application. However, programming the FPGA with the
Hardware Manager is sufficient for a first prototype and a driver for the
FPGA subsystem can be implemented in the future.

The Hardware Manager needs a bitstream file (*.bit) to program the FPGA.
Instead, Vitis creates a device binary (*.xclbin), which includes the bit-
stream. There are two possibilities to extract the bitstream from the device
binary. First, we could use the command line tool xclbinutil and extract
the bitstream with the following command:

xclbinutil -i vadd.xclbin \

--dump -section BITSTREAM:RAW:bitstream.bit

The bitstream is saved to bitstream.bit and can now be used by the Hard-
ware Manager. The other possibility is to open the Vivado project in the build
directory, as described in Section 3.2.1. If we open the Hardware Manager
in this project, the correct bitstream is automatically selected and we can
program the FPGA. We prefer the later approach because it saves the extra
step over the command line tool.

After the bitstream is loaded, the Hardware Manager resets the FPGA to
its initial state. This also reboots the CPU. During the reboot, the CPU and
FPGA perform the training of the ECI link. If the training was successful, the
ECI link is ready and the CPU boots into Linux.

Buffer Allocation

Once Linux has started successfully, we can allocate memory for the input and
the output vector of the vadd kernel. XRT uses the Linux DRM Framework
to handle buffer allocation, but for our case we created a small C program,
called buf. The source code is shown in Listing 3.8.

Listing 3.8: C program for buffer allocation

uintptr_t in_paddr , out_paddr;

volatile uint32_t *in_buf , *out_buf;

// buffer allocation

in_buf = aligned_alloc (1024, 4096);

out_buf = aligned_alloc (1024, 4096);

// init data

for (int i = 0; i < 32; i++)

in_buf[i] = i;

memset ((void*)out_buf , 0, 4096);

54

3.3. Xilinx Runtime (XRT)

// look up physical addr

virt_to_phys (&in_paddr , (uintptr_t)in_buf);

virt_to_phys (&out_paddr , (uintptr_t)out_buf);

// print result

printf("paddr: 0x%jx 0x%jx\n", in_paddr , out_paddr);

print_buffer(out_buf);

Initially, the program allocates memory for the input and the output buffer.
Note that the memory must be aligned to the cache line size (1024 bit) because
Enzian DMA can only transfer full cache lines. Next, the input and output
buffer are initialized with test data. Then, the program calls virt_to_phys to
look up the physical start address of the buffers. The function virt_to_phys

parses /proc/<pid>/pagemap, which exposes the address mapping of a pro-
cess to the user space [43]. Notice that root permissions are required to access
the address map. Finally, the program prints the addresses and outputs the
result buffer in an endless loop (print_buffer). We omitted error handling
to make this example more concise.

Once the program is running, we can send the physical addresses of the
buffers to the kernel. The next section covers how we transfer these addresses
to the kernel. After receiving the addresses, the kernel uses Enzian DMA
to read the input buffer and to write the result in the output buffer. The
program outputs the output buffer continuously and we can verify the result.

Kernel Arguments

Next, we need to set the arguments of the kernel function. As stated in
Section 3.1.1, the arguments are set by various registers. Vitis HLS creates
a register map during the kernel compilation. The register map of the vadd

kernel is shown in Listing 3.9.

Listing 3.9: Register map of the vadd kernel

0x00 : Control signals

bit 0 - ap_start

bit 1 - ap_done

bit 2 - ap_idle

bit 3 - ap_ready

bit 4 - ap_continue

bit 7 - auto_restart

others - reserved

0x08 : Global Interrupt Enable Register

bit 0 - Global Interrupt Enable

others - reserved

55

3. Implementation

0x10 : IP Interrupt Enable Register

bit 0 - enable ap_done interrupt

bit 1 - enable ap_ready interrupt

others - reserved

0x18 : IP Interrupt Status Register

bit 0 - ap_done

bit 1 - ap_ready

others - reserved

0x20 : Data signal of in

bit 63~0 - in [63:0]

0x28 : reserved

0x30 : Data signal of out

bit 63~0 - out [63:0]

0x38 : reserved

0x40 : Data signal of n_elements

bit 63~0 - n_elements [63:0]

0x48 : reserved

The first register (0x00) has several signals to control the kernel execution. We
discuss this register in the next section. The next three registers (0x08-0x18)
are for interrupt control. Interrupts are not in the scope of this work, so these
registers can be safely ignored.

After the interrupt registers, we can see the registers for the kernel arguments.
The vadd kernel has three arguments. Both in and out are pointers to an
array. The in array holds the input data whereas the out array stores the
result. The third argument n_elements is a scalar value for the number of
elements in the array. We can see how the registers 0x20 to 0x40 correspond
to the arguments:

• Register 0x20 maps to argument in

• Register 0x30 maps to argument out

• Register 0x40 maps to argument n_elements

The first two arguments are arrays, so we need the start address of the
corresponding buffer. The C program from the previous section writes the
first physical address of each buffer to the console, which also happens to be
the start address of the buffer. The last element is a scalar value, so we can
directly write the number of vector elements into register 0x40.

The registers can be accessed from the CPU over the Enzian Coherent Inter-
connect (ECI). The Linux kernel maps the registers to the following address
range:

0x0000900000000000 - 0x000097dfffffffff

56

3.3. Xilinx Runtime (XRT)

ECI defines this address range and passes it over the device tree to the Linux
kernel. If a program reads a value from this range, the read request goes over
ECI to the kernel and the kernel returns the value of the register. Similarly,
if a program writes to a certain address in that range, the new value is
transferred over ECI to the kernel.

To manually access the registers, we created another C program reg that is
shown in Listing 3.10. Error handling is omitted.

Listing 3.10: C program to access the kernel registers

int main(int argc , char *argv [])

{

int fd = 0, size = 4096;

uint64_t paddr , reg , val;

volatile uint64_t *ptr;

reg = strtol(argv[1], NULL , 16);

if (argc > 2)

val = strtol(argv[2], NULL , 16);

fd = open("/dev/mem", O_RDWR);

paddr = 0x0000900000000000;

ptr = mmap(NULL , size , PROT_READ | PROT_WRITE ,

MAP_SHARED , fd, paddr);

if (argc > 3) {

ptr[reg / 8] = val;

} else {

val = ptr[reg / 8];

printf("Value: %lx\n", val);

}

munmap(addr , size);

close(fd);

return EXIT_SUCCESS;

}

The program can be used to both read or write to a register. For reading
a register, we have to specify the register offset as an argument and the
program prints the content of that register. If we want to write to a register,
we provide the offset and a value to should go to the register. The program
works similarly for read and writes. After, parsing the input arguments,
we open /dev/mem and get a file descriptor back. /dev/mem is a special file
that provides access to the physical address space. Only users with root
permission can access this file. Next, we pass the file descriptor and the

57

3. Implementation

start address of the registers to mmap. mmap returns a pointer to that memory
location and we can access the registers like an array. Note that we have to
divide the register offset by eight because each register has a 64-bit word
size.

Now we have all the required tools to configure and execute the vadd kernel.

Kernel Execution

In this section, we briefly summarize how we prepared the kernel for its first
execution and run it. Initially, we started buf and the start address of the in

and out buffer was printed on the console. We will denote the start address
of in as addr_in and the start address of out as addr_out. The buf program
runs now in the background and prints the output buffer periodically on the
console.

Next, we configure the kernel arguments. We used the following commands
to set the arguments:

./mem 0x20 <addr_in >

./mem 0x30 <addr_out >

./mem 0x40 <vector_size >

The first argument corresponds to the register offset as specified in Listing 3.9.
The second argument is the value that will be written to the register. The
kernel is now configured and ready for execution.

As previously mentioned, we can control the kernel execution with the
content of register 0x0. The vadd kernel uses the AP_CTRL_CHAIN execution
model, which is the default model for Vitis kernels. Section 2.3.3 describes this
execution model and the purpose of each bit in register 0x0. The following
command starts the kernel execution:

./mem 0x0 0x1

This command sets the first bit (ap_start) of register 0x0 and the vadd kernel
starts reading the input data.

The vadd kernel reads the input vector over the AXI memory interface. The
kernel writes the address in register 0x20, the start address of the in buffer,
and the size of the vector in register 0x40 to the AXI read address channel.
This read request is converted into ECI packages and send to the memory
controller of the CPU. The CPU responds with the requested data and the
kernel saves the input vector in a BRAM buffer.

Once the input vector is available, the kernel starts executing the custom
logic. Our custom logic is adding a constant number to each value of the
input vector. The result of this computation is again stored in BRAM.

58

3.3. Xilinx Runtime (XRT)

When the result is ready, the kernel writes the start address of the out buffer
(register 0x30) and the vector size to the write address channel of the AXI
interface. Once the handshake with the CPU has completed, the kernel writes
the result back to the CPU buffer of the AXI write data channel. The output
buffer on the CPU is continuously printed by buf, so we can verify that the
result of the computation is correct.

In summary, this was our first successful run of a kernel across all layers.
Now that we have a detailed understanding of the kernel execution and
know for certain that the hardware works, we can run the kernel using the
XRT software stack.

3.3.3 Experiments with the complete XRT Stack

We almost have all the necessary parts to run our first OpenCL application
on Enzian. However, the Linux drivers that are shipped with XRT are not
compatible with Enzian. Therefore, we need to change these drivers so they
recognize the Enzian hardware. We discuss these changes in the first part of
this section. In the second part, we show how to run the vadd kernel with
the XRT stack as an OpenCL application.

Linux Driver

XRT includes two Linux drivers that support different devices. The xocl

driver is for PCIe based accelerator cards and the zocl driver supports edge
devices. Figure 2.4 shows how these two drivers are embedded in the XRT
software stack.

In general, xocl is more sophisticated as zocl because the former was
developed for a cloud environment where multiple untrusted user have
access to an accelerator. Hence, xocl includes several security features that
are not relevant for a research computer like Enzian. Another issue with xocl

is the scheduler that controls the kernels on the FPGA. xocl implements the
scheduler as a separate program, that runs on the Microblaze processor inside
the FPGA. On Enzian, the Microblaze processor runs already a program to
control the ECI link, so the scheduler cannot use the Microblaze. The zocl

driver, on the other hand, has a simpler design and the scheduler runs on the
host CPU. Therefore, we decided to add Enzian support to the zocl driver.

We had to make two changes to the zocl driver. The first change was
necessary because zocl did not recognize the Enzian hardware. Thus, the
probe function of the driver was never called and zocl did not create the
device nodes that XRT expected. The second change was related to the word
size of the kernel control registers. As mentioned previously, XRT supports
only 32-bit systems but Enzian has a 64-bit architecture. Hence, we had to
change zocl to support registers with 64-bit words.

59

3. Implementation

Device Probing The XRT installer added the zocl driver as a module to the
Linux kernel on Enzian. As the next step, we wanted to load the driver and
check if the probe function gets called. When a driver is added to the kernel,
it is idle until a supported device is detected. Once a device shows up, the
Linux kernel calls the probe function of the driver which supports the device.
The probe function initializes the device and the driver is ready to interact
with it.

We added a print statement to the probe function of the zocl driver to check
if it probed successfully. Then we executed the following command to load
the driver:

sudo modprobe zocl

The print statement did not show up in the kernel log so the probe function
has not been called. This was expected because zocl has no support for
Enzian.

The probe function is called if a certain device shows up in the device tree.
Specifically, if the device tree contains a node called zocl. The ThunderX
CPU exposes a device tree to the Linux kernel but the required node was
missing. Xilinx devices, on the other hand, have this node in their device tree
so the zocl driver probes correctly.

We present two solutions for this problem. We could either extend the device
tree with the missing node or add a device manually to the kernel. On
Enzian, the UEFI firmware generates the device tree. If we want to add the
missing node to UEFI, we need to recompile and flash a new firmware image.
However, flashing a new firmware image can be tricky.

Instead, we created a kernel module that registers a device in the kernel. The
source code of the module is shown in Listing 3.11.

Listing 3.11: Kernel module that registers a platform device

static struct platform_device enzian = {

.name = "zocl -drm"

};

static int __init enz_init(void)

{

int ret;

ret = platform_device_register (& enzian);

if (ret)

return ret;

return 0;

60

3.3. Xilinx Runtime (XRT)

}

static void __exit enz_exit (void)

{

platform_device_unregister (& enzian);

}

module_init(enz_init);

module_exit(enz_exit);

When the module is loaded, the enz_init() function is executed. This func-
tion calls platform_device_register() which takes a platform_device

struct as input. The struct has the name field set to zocl-drm.

If the kernel could not find a driver using the conventional methods, like
device tree matching, it looks for a driver with the same name as the device.
Our kernel module registers a device called zocl-drm which happens to
be the name of the zocl driver. Therefore, the kernel matches our dummy
device with the zocl driver and calls the probe function.

By using this kernel module, we were able to successfully initialize the zocl

driver. In future releases, it might be beneficial to extend the device tree so
the zocl driver is loaded at boot time.

Control Registers As we mentioned in Section 3.2.1, the control registers
of the kernel have 64-bit words. However, the zocl driver supports only
registers with 32-bit words. In particular, the driver uses the kernel functions
ioread32() and iowrite32(). To support 64-bit words, we replaced these
two functions with their 64-bit counterparts (ioread64() and iowrite64()).
This breaks compatibility with existing Xilinx boards but is sufficient for our
prototype. In the future, we could support Enzian and Xilinx boards and
enable the correct functions with a build argument. The word size could
also be converted in the FPGA shell (platform), but we did not explore this
approach.

Another problem is the base address of the control registers. In Section 3.3.2
we discussed that the registers are mapped to a certain address in the CPU
address space. The driver needs to know this base address to access the
registers and to control the kernel. Normally, this base address is defined
in the metadata of the device binary (xclbin). The driver extracts the base
address from the metadata and initializes the registers. However, this address
was not present in our device binaries. We suspect that the Enzian platform
file is not correct and the Vitis compiler could not find the address during
the build phase. The platform file format is not documented and we could
not find the correct place in the platform file to specify the address. Instead,

61

3. Implementation

we hard-coded the base address in the zocl driver so the API for accessing
the registers is correctly initialized.

After we applied these two changes, the XRT stack was ready to run the vadd

kernel.

Execute a kernel with XRT

In this section, we describe how we finally run the vadd kernel using XRT
and OpenCL API calls.

We started this experiment with extracting the bitstream and programming
the FPGA (see Section 3.3.2). After the bitstream is loaded, Enzian boots into
Linux. Once Linux finished the booting, we loaded the zocl driver and the
dummy device with the following two commands:

sudo modprobe zocl

sudo insmod enzian -dev.ko

For this experiment, we denote the device binary as vadd.xclbin and the
host binary as host.exe. To start the vadd kernel, we executed the following
command:

XRT_XILINX =/usr ./host.exe vadd.xclbin

This command executes the OpenCL API calls, shown in Listing 3.7. XRT
translates the OpenCL calls into ioctl system calls. These ioctls are handled
by the zocl driver which interacts with the kernel on the FPGA.

Listing 3.12 shows the output of our experiment.

Listing 3.12: Output of the vadd kernel executed with XRT

Found Platform

Platform Name: Xilinx

INFO: Reading vadd.xclbin

Loading: vadd.link.xclbin

Trying to program device [0]: edge

Device [0]: program successful!

TEST PASSED

The host application verifies the result of the vadd kernel by doing the same
vector addition internally. If both results match, the string TEST PASSED is
printed to the terminal.

In summary, we successfully run an OpenCL application with the XRT
software stack which concludes this chapter. In the next chapter, we test
several OpenCL API calls and discuss the limitations of the Enzian platform.

62

Chapter 4

Evaluation

The goal of our evaluation is to show that Enzian can execute OpenCL
applications and that their performance is comparable to existing systems.
We also want to point out the limitations of our platform, as a reference for
future work.

We start with verifying that our implementation does not add a significant
performance overhead to ECI. Then, we run a more sophisticated OpenCL
application on Enzian and compare its performance to existing FPGA accel-
erators. Finally, we show which key features of OpenCL and Vitis work on
Enzian.

4.1 ECI Performance

In this section, we want to show that our implementation does not add any
significant overhead to ECI. To do so, we measured the throughput of ECI
with two OpenCL kernels. One kernel reads data from the CPU memory to
the FPGA block memory. Similarly, the other kernel writes data from the
FPGA to the CPU memory. We compare these findings with measurements
from a previous work [48] to show the overhead of OpenCL. These previous
results were measured with an optimized FPGA design, that used the same
underlying modules for accessing ECI as our implementation. So far these
measurements achieved the best throughput on ECI.

We run both kernels for various transfer sizes and averaged the measurements
over 10000 runs. Enzian has two links, each with a theoretical bandwidth
of 15 GiB/s. The previous measurement restricted all traffic to a single link,
so we also use just one link. The FPGA runs with a frequency of 300 MHz
similar to the other measurement.

Figure 4.1 shows that our OpenCL implementation has a lower throughput
for all transfer sizes. Our implementation achieved a maximum throughput

63

4. Evaluation

128 256 512 1024 2048 4096
Transfer Size [B]

2

4

6

Throughput [GiB/]

enzian_RD
enzian_WR
opencl_RD
opencl_WR

Figure 4.1: ECI Performance Plot

of 1.74 GiB/s for writes, whereas the optimized design went up to 6.12 GiB/s
for reads.

Although these numbers suggest that our implementation adds a significant
overhead, we identified three other reasons for the low throughput. First, we
can only run one kernel on the FPGA. This is a limitation of our prototype,
which we discovered during the evaluation in Section 4.4.1. One kernel can
probably not saturate ECI due to the limited frequency of the FPGA. Second,
the other FPGA design was manually optimized to achieve the best possible
throughput on ECI. Our OpenCL kernels were compiled with Vitis using
high-level synthesis. Although the Vitis compiler applied some optimizations
like pipelining, it can never reach the same level of optimization as the other
FPGA design. Finally, we could not run larger transfers than 4 KB because
the kernels got stuck with larger values. We were not able to fix this issue in
the limited time frame of this thesis. However, as we can see in Figure 4.1, the
OpenCL throughput is not saturated and could increase with larger transfer
sizes.

In sum, the explanation above suggests that OpenCL might not add a signif-
icant overhead to ECI. However, the findings above must be quantified by
further measurements.

64

4.2. Matrix-Matrix Multiplication

4.2 Matrix-Matrix Multiplication

So far we have only tested small OpenCL applications. With this experiment,
we want to show that Enzian can also run a real-world application. To
that end, we execute an existing OpenCL application [56] that performs a
matrix-matrix multiplication on Enzian. We run the same application on a
commercial FPGA accelerator as a reference for comparison.

We were able to compile and execute the application without any changes to
the existing source code. In fact, we only had to change the data width of the
kernel, so it accesses the matrices at cache line granularity, as described in
Section 3.2.1. Other than that, the porting of the application to Enzian worked
without any issues. This example shows that a user of our implementation
can run existing OpenCL applications with minimal effort.

We compare Enzian with an Xilinx Alveo u250 accelerator card. The two
systems have the same FPGA but a different link to the CPU. On Enzian, the
CPU and FPGA are connected over ECI, which has a maximum bandwidth
of 15 GiB/s (one link). The Alveo card uses a 16-lane PCIe Gen3 bus to
communicate with the CPU. This bus has a maximum theoretical bandwidth
of 16 GiB/s per direction [51].

Figure 4.2 shows that the throughput on the Alveo card is on average two-
times higher than it is on Enzian. The Alveo card achieved a maximum
throughput of 280.91 MiB/s whereas Enzian got up to 157.31 MiB/s, both
with a 16×16 matrix. Note that we used small matrix sizes because of timing
violations with larger matrices on Enzian.

2 4 6 8 10 12 14 16
Matrix Size [nxn]

100

200

300
Throughput [MiB/s]

u250
enzian

Figure 4.2: Matrix-Matrix Multiplication Performance Plot

65

4. Evaluation

Usually, the performance of matrix-matrix multiplication algorithms is re-
ported in operations per second. However, we do not want to evaluate an
algorithm but the overall performance of our system. Therefore, we measured
the throughput, averaged over 10000 runs.

We expected a higher throughput for both Enzian and the Alveo card. There-
fore, we calculated the approximated throughput of the kernel manually. We
give an example for Enzian with a 16×16 4-byte integer matrix. We assume
a memory latency of 500 ns per cache line. Each matrix is stored in eight
contiguous 128-byte cache lines, so we have a latency of 8 × 500 ns = 4 µs
per matrix. The kernel reads two matrices and writes to one matrix, so the
overall latency is 12 µs. With a transfer size of 3 × 8 × 128 B = 3 KiB, we get
a throughput of 244 MiB/s, which is in the range of the measured value
(157.31 MiB/s).

Therefore, we concluded that kernel is not well optimized because the compu-
tation is dominated by memory operations. To achieve a higher throughput,
we could either increase the matrix size or run multiple kernels in parallel.
However, the former is not possible due to timing violations and the latter
does not work because our prototype supports only one kernel.

If we look again at Figure 4.2, we can see that the Alveo card is on average
2x faster than Enzian. As the kernel is memory bound, we suspected that the
Alveo card has a higher interconnect throughput. To confirm this, we also
executed the benchmark from the previous section on the Alveo card.

Figure 4.3 shows that the Alveo card has a higher throughput than Enzian,

128 256 512 1024 2048 4096
Transfer Size [B]

2

4

6

Throughput [GiB/]

u250_RD
u250_WR
opencl_RD
opencl_WR

Figure 4.3: Interconnect Performance Plot

66

4.3. OpenCL API

which supports our previous assumption. To bring the throughput on Enzian
to the same level as the Alveo card, we must address the issues mentioned in
Section 4.1.

In summary, we showed that Enzian can run a sophisticated OpenCL appli-
cation and that the performance of our implementation is predictable.

4.3 OpenCL API

This section checks the functionality of the OpenCL API after we applied
our changes. We first tried to run the OpenCL conformance test suite [27] to
verify that our implementation is still valid. However, this test suite is quite
complex and it would require a significant effort to build and run all tests.
Therefore, we opted for a simpler approach. Instead of using a pre-defined
test suite, we created several small programs to test the most important
parts of the API. We identified these parts based on our experience, that
we gathered from our previous experiments. We describe the tests for the
platform layer and the runtime layer in a separate section.

4.3.1 Platform Layer

The API calls in the platform layer can be used to discover the available
devices and to create a context which is the foundation of the runtime envi-
ronment. We had already tested the platform layer during our experiments
with the vadd kernel in Chapter 3 and were able to successfully create a
context. Thus, the goal of this section is to collect various properties of the
platform layer and verify if they match with our expectations.

We wrote a small test program (see Appendix B) to print various properties
of the platform layer with the help of OpenCL calls. Listing 4.1 shows the
output of the program.

Listing 4.1: Output of test program for the Platform Layer

1 platform(s) detected

CL_PLATFORM_NAME: Xilinx

CL_PLATFORM_VENDOR: Xilinx

CL_PLATFORM_VERSION: OpenCL 1.0

CL_PLATFORM_PROFILE: EMBEDDED_PROFILE

CL_PLATFORM_EXTENSIONS: cl_khr_icd

1 device(s) detected

CL_DEVICE_NAME: edge

CL_DEVICE_VERSION: OpenCL 1.0

67

4. Evaluation

CL_DEVICE_VENDOR: Xilinx

CL_DRIVER_VERSION: 1.0

CL_DEVICE_TYPE: CL_DEVICE_TYPE_ACCELERATOR

CL_DEVICE_EXTENSIONS:

CL_DEVICE_IMAGE_SUPPORT: 1

CL_DEVICE_COMPILER_AVAILABLE: 0

CL_DEVICE_ADDRESS_BITS: 64

CL_DEVICE_GLOBAL_MEM_SIZE: 4 GiB

CL_DEVICE_LOCAL_MEM_SIZE: 16 KiB

CL_DEVICE_MEM_BASE_ADDR_ALIGN: 1024

CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE: 128

CL_DEVICE_MAX_MEM_ALLOC_SIZE: 128 MiB

CL_DEVICE_MAX_CLOCK_FREQUENCY: 100

CL_DEVICE_MAX_COMPUTE_UNITS: 0

CL_DEVICE_MAX_WORK_GROUP_SIZE: 4294967295

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: 3

Context successfully created

The output is divided into three sections. The first section describes the
platform. The next section outputs properties about devices and the final
section indicates that the context was created successfully.

The program detected one platform on Enzian that supports the embedded
profile of OpenCL 1.0. The embedded profile is a subset of the OpenCL
specification with relaxed floating-point requirements for embedded devices.
The platform has the cl_khr_icd extension enabled which is the Installable
Client Driver (ICD) (Section 3). In conclusion, there seems to be no error in
the platform properties and the platform should work as expected.

For the device, on the other hand, we expected different values. For instance,
the device name (CL_DEVICE_NAME) is not correct correct so it is not possible
to explicitly filter for Enzian devices. We expected that the size of the global
memory (CL_DEVICE_GLOBAL_MEM_SIZE) is equal to the size of the CMA
region that is allocated by the Linux kernel during boot time. However, it
seems that Xilinx hard-coded the global memory size to 4 GiB. Note that we
converted the numbers from bytes to a readable format. The size of the local
memory (CL_DEVICE_LOCAL_MEM_SIZE) is 16 KiB but we do not know if this
value is correct. We could not find any Xilinx documentation that defines
the location of the local memory. Other OpenCL implementations define
the caches close to the CPU/GPU as local memory but this definition is not
applicable to FPGAs. The maximum clock frequency and the maximum
number of compute units are also not correct. The FPGA on Enzian runs

68

4.3. OpenCL API

with a clock frequency of 300 MHz instead of 100 MHz. Currently, the
Enzian platform supports only one compute unit so the maximum number
of compute units should be one and not zero. Based on our understanding,
the other properties seemed to be correct.

The last section just confirms that the program created a context and that no
error occurred during the test.

To conclude, the platform layer of our implementation is not fully compatible
with the OpenCL standard. In particular, the device properties do not agree
with the Enzian specification. These incorrect properties could prevent certain
OpenCL applications from running and should be addressed in future work.

4.3.2 Runtime Layer

We have already tested the OpenCL runtime layer during our experiments
with the vadd kernel and during the measurements at the beginning of this
chapter. Therefore, we did not write a separate program to test the runtime
layer. Instead, we summarize the limitations of the runtime layer, that we
encountered during our previous experiments. We go over each concept of
the runtime layer separately, and point out the shortcomings of the Enzian
platform.

Program

OpenCL has two workflows to get a reference to a program. It can either be
compiled from the source code at runtime or we can provide a binary repre-
sentation of the program so no runtime compilation is necessary. Runtime
compilation is usually the preferred method to generate a program, because
the compiler can apply runtime optimizations. However, Vitis supports only
the binary workflow due to the long build time of FPGA bitstreams. This
was also indicated in the output of the test program from the previous sec-
tion (see Listing 4.1). The device property CL_DEVICE_COMPILER_AVAILABLE

was zero, which means that no runtime compiler is available. This is not a
limitation of the Enzian platform, but just a fact that Enzian users need to be
aware of.

Nevertheless, there is a feature missing in our implementation, that normally
exists in other OpenCL implementations. As we mentioned in Section 3.3.2,
we had to program the FPGA with Vivado. This interrupted our workflow
because we had to switch to Vivado each time we run a different application.
The programming of a device is usually transparent to the end user in
other OpenCL implementations. For example, Vitis programs the FPGA of
supported devices automatically when the user starts an OpenCL program.
We argue that this feature should be implemented in future revisions of the
Enzian platform, because it improves the usability of Enzian significantly.

69

4. Evaluation

Apart from the previous issue, we could not find any other limitation regard-
ing the program concept.

Kernel

During our previous experiments, we created a number of kernel objects
and did not encounter any error or unexpected behaviour. However, the
current version of Enzian supports only one kernel, because this simplifies
the implementation of the FPGA shell. OpenCL defines that a program can
have multiple kernels, so our implementation is not compatible with the
OpenCL specification. We cover this limitation in more detail during the
evaluation of Vitis in Section 4.4.1.

Command Queue

Again we used the command queue during our previous experiments so
we can submit commands to the queue and communicate with the FPGA.
There are two features of the command queue that we had not tested before.
The first feature is out-of-order execution and the other feature is profiling.
Section 2.1.1 covers these features in detail.

As we mentioned in the previous section, our implementation does not
support multiple kernels. Although we could create a command queue with
out-of-order execution enabled, it would not increase the performance of an
application. The command queue has only one kernel available, so it can
send the commands only to that kernel, which results in a serial execution.
To confirm this assumption, we ran some of our benchmarks in out-of-order
mode and could not see any performance improvements.

The profiling feature collects comprehensive information about a kernel
execution. This data is particularly useful for finding performance bottlenecks.
A user has two possibilities to access the profiling data in our application.
The data can either be collected with the OpenCL API or with Vitis.

The OpenCL API provides access to the profiling information via events.
Each function that enqueues a command takes an event object as input. This
event object can then be used to measure the execution time of a command.
For example, if we want to measure the execution time of a kernel, we pass
an event object to enqueueTask. After the execution has finished, we can
use getProfilingInfo to query the start and end time of the execution in
nanoseconds. To test this feature on Enzian, we created another version
of the bandwidth benchmark with these profiling events. The execution
times measured with the profiling events were in the range of our initial
measurements. Thus, we conclude that OpenCL profiling is supported by
Enzian.

70

4.3. OpenCL API

Figure 4.4: Excerpt from a profiling report in the Vitis Analyzer

Vitis has various profiling tools to inspect the build process and the execution
of a kernel. We focus on execution profiling in this section. Vitis generates
two different reports with profiling data. The first report can be generated
from any application and contains general information about the execution.
The second report requires some special IPs, that must be added to the device
binary during the build process. Vitis uses these IPs to collect additional data
for an in-depth report of the kernel execution.

We tried to generate both reports for the bandwidth benchmark. For the
first report, we passed a flag to the Xilinx Runtime (XRT) and XRT collected
the runtime data. Then, we used the Vitis Analyzer to visualize the report.
Figure 4.4 shows an excerpt of the report. The report lists all transfers from
the host to global memory. These numbers provide little insight because
Enzian uses the CPU DDR as global memory. The interesting part is the
Kernel Data Transfers section. This section is above the currently open Host
Data Transfers section on the left hand side. However, this section is only
available in the other report and contains no data in the report we just
generated.

As we mentioned before, the second report requires additional IPs in the
FPGA design to collect data. We tried to add these IPs but the Vitis compiler
aborted the build with the following error:

ERROR: [VPL 41 -237] Bus Interface property DATA_WIDTH

does not match between

/System_DPA/dpa_mon1/MON_S_AXI (32) and

/axi_switch_kernel_control/M01_AXI (64)

71

4. Evaluation

The error indicates that the data width of the additional IPs and the Enzian
platform does not match. We already solved this problem for the kernel
control interface (see Section 3.2.1). However, we did not fix this problem for
the profiling, so Enzian does not support extended profiling reports.

4.4 Vitis Features

This section evaluates other important features of the Vitis framework which
are not part of the OpenCL standard. We selected these features based on
our experience from working with Vitis throughout this thesis. This selection
is by no means complete, but it should give the reader a first impression on
how well Enzian is supported by Vitis.

4.4.1 Multiple Kernels

In our previous experiments, a program had only one kernel and Vitis created
one instance of this kernel in the FPGA fabric. However, certain applications
may benefit from having multiple instances of the same kernel (spatial
parallelism) or from distributing a task across different kernels (temporal
parallelism). Vitis supports both types of parallelism. First, the Vitis linker
can create multiple instance of the same kernel in the FPGA fabric. The host
application can send commands to each kernel instance individually. Second,
it is possible to add different kernel functions to a program. Each kernel
function has to be marked with a distinct __kernel attribute. Vitis can even
connect these kernels together over a streaming interface. A developer could
use this technique to build complex pipelines that can significantly improve
performance.

We conducted two experiments to check if Enzian supports multiple kernels.
In the first experiment, we reused the vadd kernel and passed additional
flags to the Vitis linker. These flags instructed the linker to create multiple
instances of the vadd kernel. However, the build did not complete successfully
because there were not enough memory interfaces available. As mentioned in
Section 3.1, the Enzian platform has only one memory interface to access the
shared memory. Further, multiple kernels cannot share a memory interface
because of the underlying protocol. The linker could not find a memory
interface for each kernel and, thus, aborted the build.

In the second experiment, we observed a similar behaviour. We created
a test program that has two function with different __kernel attributes.
Vitis successfully compiled the program but during the platform linking we
encountered the same error message as in the first experiment.

To summarize, Vitis on Enzian does currently not support multiple kernel
instances. In Section 6.1 we briefly cover how to add multiple memory

72

4.4. Vitis Features

interfaces, which enables multiple kernel support.

4.4.2 Emulation

Vitis provides an emulation environment to quickly build a kernel and verify
that it works. The Vitis compiler has two different build targets to create
an emulation binary from a kernel. The first build target is for software
emulation. The compiler converts the kernel into a C binary, which can
be run on a normal x86 system. Software emulation is useful to verify the
program logic but it does not provide a cycle-accurate emulation. The other
build target is for hardware emulation. The kernel code is compiled into
an RTL model and is run in the Vivado simulator. This emulation takes
more time but provides a cycle-accurate view of the kernel logic. Overall,
emulation is an essential feature of an FPGA framework so it would be
beneficial if Enzian supports it.

The Vitis documentation states that hardware emulation requires some extra
IPs in a custom platform [54]. We did not add these IP to the Enzian platform.
Thus, Enzian does not support hardware emulation and we did not run any
experiments related to hardware emulation.

To verify that software emulation is supported by Enzian, we compiled the
vadd kernel with the build target sw_emu. This build target creates a dummy
device binary (vadd.xclbin), which contains a C model of the kernel. Then,
we used the command line tool emconfigutil to create a configuration file,
that is necessary for the emulation. After these additional steps, we reused
the host binary from Section 3.2.2, to start the emulation on our internal
build server. The emulation of the vadd kernel executed as if it would run on
Enzian and produced the same result as on real hardware.

In conclusion, this experiment showed that software emulation with the
Enzian platform works as expected. However, hardware emulation is not
supported by Enzian and requires extra steps to implement.

4.4.3 Kernel Programming Languages

Vitis supports kernels written in C/C++, OpenCL C or RTL. During previous
experiments, we created both C/C++ and OpenCL C kernels. Therefore, we
can confirm that Enzian supports kernels written in those two languages.

We did not verify that Enzian can run an RTL kernel, but we are confident
that RTL kernels are also supported. RTL kernels are created in Vivado
and exported to a Xilinx object file (*.xo) with the package_xo command.
Afterwards, the object file is passed to the linker and connected to the
platform. This is the same process for every kernel independent of the
implementation language. We extensively tested the linking phase and we

73

4. Evaluation

did not change anything related to Vivado. Therefore, Enzian should support
RTL kernels to the same extend as C/C++ or OpenCL C kernels.

4.4.4 Streaming Data Transfer

Vitis has a programming model that supports direct streaming of data be-
tween to endpoints. This programming model is usually more efficient,
because it is not necessary to migrate the complete data set to the FPGA
before the computation can start. With data streaming, a kernel can start
executing as soon as the first data arrives. Hence, it would be useful if
Enzian supports streaming data transfers, in particular, for high-performance
applications.

There are two types of streaming data transfers. The data can either be
streamed between the kernel and the host (H2K) or between two kernels
(K2K). The first type enables a fast communication between the host and
a kernel with minimal overhead. With the other type, kernels can directly
exchange data with each other without transferring data back to global
memory.

The Vitis documentation does not describe a method to add support for
H2K streaming data transfer to a custom platform. Due to the lack of any
other documentation, we did not implement H2K streaming data for Enzian.
K2K streaming could potentially work on Enzian. However, the current
implementation does not support multiple kernels so we were unable to test
K2K streaming.

4.4.5 Command Line Tools

The Vitis software suite offers the following command line tools:

v++ The Vitis compiler to create Xilinx object files from kernels and link
them together for the device binary.

emconfigutil This tool creates a configuration file for the hardware or
software emulation.

platforminfo This utility tool reports platform metadata including informa-
tion about interfaces, clocks and the memory topology.

kernelinfo This tool displays information about Xilinx object files.

xclbinutil This tool displays information about device binaries.

xbmgmt / xbutil These tools have many options for managing the FPGA
device.

In this section, we briefly cover which tool is supported by Enzian. We
did not test every feature of the Vitis compiler (v++), but the tool worked

74

4.4. Vitis Features

reliably during our experiments. Therefore, we conclude that v++ supports
the Enzian platform. We also tested the emconfigutil during our experiment
with software emulation and it worked as expected with the Enzian platform.

We run the platforminfo tool with the platform file which we created in
Section 3.1. The tool produced the correct output (see Listing C.1) and printed
all relevant information about the platform. The kernelinfo tool worked
also as expected. Listing C.2 shows the output of the vadd kernel.

During our experiments, we extensively used xclbinutil to inspect and
manipulate various device binaries. We have never encountered any issues
so the tool fully supports Enzian device binaries.

According to the Vitis documentation, the xbmgmt tool does not work with
custom platforms like Enzian. This tool was also not included in the Debian
package so we could not install it on Enzian. The xbutil tool, on the other
hand, was part of the Debian package so we installed it on Enzian. However,
as we tried to query information about the Enzian platform, it exited with
an error. We suspect that the Linux driver caused this error. Most likely,
the driver was unable to read some information about the hardware. The
support of this tools is not essential to run a Vitis application on Enzian.

75

Chapter 5

Related Work

Programming heterogeneous accelerators, especially CPU-FPGA based sys-
tems, remains a challenge and is an active field of research. This chapter
surveys various FPGA programming frameworks with focus on OpenCL. We
begin with an overview of different OpenCL implementations. Apart from
commercial implementations, we also cover projects from academia and the
open-source community. Finally, we discuss why OpenCL is not always a
good fit for FPGAs and present alternative programming models.

Almost all significant CPU or GPU manufacturers provide an OpenCL im-
plementation for their devices [21, 3, 40]. These implementations are actively
maintained and are usually compliant with the latest OpenCL version. Each
implementation supports only the devices of a specific vendor and these
devices are limited to CPUs or GPUs.

We discovered two commercial OpenCL implementations specifically for
FPGAs. First, Xilinx supports OpenCL as part of their Vitis software suite [62].
The Xilinx Runtime (XRT) implements the OpenCL API on the host, and a
compiler tool chain converts kernels, written in OpenCL C, into a device
binary. Second, Intel has the FPGA SDK for OpenCL [20] that provides
similar functionality as Vitis. We could not find OpenCL implementations
from other FPGA manufacturers. The two previous implementations are not
conformant with the latest OpenCL version. Thus, they do not support the
latest features of the API.

Apart from the commercial implementations, there are also community-
driven OpenCL implementations. FreeOCL [6] is an OpenCL implementation
for CPUs and the source code is licensed under GPLv3. However, the project
seems not to be actively maintained anymore. PoCL [25], on the other hand,
is an active project that has OpenCL support for various CPUs and GPUs.
PoCL implements most of the OpenCL API calls and provides a hardware
abstraction layer, so adding support for new devices is straightforward.

77

5. Related Work

Similar to the commercial FPGA implementation, the community solutions
do usually not support the latest OpenCL features.

There are also several academic OpenCL implementations. An early work
of Czajkowski et al. [10] describes a prototype of an OpenCL compiler
for FPGAs. They used the Altera OpenCL library for the host runtime
environment and created a custom compiler based on LLVM [30] to build the
FPGA binary. This work is essential as the device binary part of commercial
OpenCL implementations is often not disclosed.

Mirian et al. [36] created UT-OCL, an OpenCL framework for embedded
systems using FPGAs. UT-OCL provides the complete OpenCL software
stack and is similar to commercial frameworks, such as Xilinx Vitis. Although
UT-OCL is targeting embedded systems, it provides valuable insights into
various details of an OpenCL implementation. The author published other
interesting work [34, 35, 33, 32] that explores different aspects of CPU/FPGA
based systems.

Another line of research tries to program FPGAs with high-level languages,
such as Java or Python. These tools can be divided into two categories. The
first category converts a kernel, written in a high-level language, into OpenCL
code and uses an OpenCL implementation to run the kernel on an FPGA.
For example, Aparapi [4] is a framework that converts Java to OpenCL code
that can then be executed on an FPGA [45, 44]. PyOpenCL [28, 47] is another
example for Python. The second category of tools creates HDL code from
a high-level language [22, 46]. The HDL code is then synthesized with a
vendor tool chain.

While OpenCL makes FPGAs more accessible, it does not always leverage
the full capabilities of an FPGA [23, 38]. In particular, there is a mismatch
between the OpenCL programming model and the FPGA architecture. This
mismatch can be explained by the fact that OpenCL was initially designed
for GPUs [37].

Despite the popularity of OpenCL for FPGA programming, some companies
moved away from the OpenCL standard. For example, Apple, the creator
of OpenCL, deprecated OpenCL in favor of their Metal API [50]. Another
example is Xilinx that uses a C++ API instead of OpenCL in the most recent
version of their Vitis software suite [66].

During our survey, we could not find many alternative programming models
for FPGAs. A recent work of Huan et al. [18] explores different execution
strategies for heterogeneous CPU/FPGA systems and provides valuable
insights into the future of FPGA programming models.

78

Chapter 6

Conclusion

In this thesis, we added support for OpenCL applications to Enzian. This
shows that Enzian is a flexible research platform that can support most
functionality of existing Xilinx boards. In addition, we improved the usability
of Enzian by opening the platform for the large community of OpenCL
developers.

Instead of creating a new OpenCL implementation, we reused an existing
OpenCL implementation from Xilinx, which is part of the Vitis framework.
We adapted Vitis so it recognizes Enzian as a supported device. Future Enzian
users can now benefit from the full functionality of the Vitis software suite.
Apart from OpenCL applications, Vitis supports accelerated applications
written in C/C++ or Python and provides a set of performance-optimized
libraries for various applications.

Nevertheless, Vitis on Enzian does not provide the same experience as if it
runs on an officially supported platform. We tried to make the Vitis workflow
as streamlined as possible but there are still some limitations. In the following
sections, we briefly address these limitations and discuss compelling ideas
for future work.

6.1 Memory Topology

In Vitis, it is possible to define the memory topology of a platform like
Enzian. The compiler can then select the memory subsystems with the best
performance for a given application. In addition, we can use different ports
of a memory controller to increase performance or to run multiple kernels
concurrently. For example, the Alveo accelerator cards have multiple DDR
banks so a kernel can read two large vectors from different banks simultane-
ously, which improves performance. Another example is a Computer Vision
pipeline that runs on the FPGA and uses a different kernel for each pipeline

79

6. Conclusion

stage. A developer can also decide if, for example, the data should be stored
in the CPU DDR or FPGA DDR. Apparently, a correct memory topology
model has many advantages.

However, when we started with the implementation, we could only use the
CPU DDR as shared memory. The module to access FPGA DDR was still in
development. This limited our design space and affected the performance
benchmarks because we could not place the data close to the FPGA. In
addition, we added only one memory interface to the Enzian platform. This
simplified the initial development but also added two restrictions. First, there
is a performance penalty because the same memory port handles all memory
requests. Second, it is not possible to run multiple kernels on Enzian. Vitis
needs a separate memory port for each kernel, or otherwise, the build will
fail.

Therefore, we suggest for future revisions to model the memory topology
of Enzian accurately. This includes adding support for the FPGA DDR and
splitting the shared memory into multiple ports.

6.2 Sub-Cache Line Access

Our implementation supports only kernels that access complete cache lines.
Sub-cache line reads or writes are not possible. This is a restriction of En-
zian DMA. We had to rewrite most kernels during our experiments so they
access the data in cache line chunks. This makes it hard to port existing
OpenCL applications and introduces unnecessary bugs. Therefore, we sug-
gest providing a module that allows sub-cache line read or writes. For
example, a kernel can send a request to read five 32-bit integers from a start
address, and the module handles all details with ECI and cache lines.

6.3 Program the FPGA with Vitis

Vitis programs the FPGA if an accelerated application is executed for the first
time. The Linux driver zocl, that is part of Vitis, programs the FPGA with
the Linux FPGA Manager framework. Our implementation currently does
not support the FPGA Manager. Instead, we used the Hardware Manager in
Vivado to program the FPGA. This did interrupt the Vitis workflow because
we had to open Vivado each time we run a different application. Future
work could make Enzian compatible with the Linux FPGA Manager. Other
projects might also benefit because they can load a bitstream from Linux,
instead of using special tools like Vivado.

After programming the FPGA with Vitis is possible, we could also implement
Dynamic Function eXchange (DFX) [53]. DFX allows to reconfigure parts of
the FPGA within an active design and has additional security features. With

80

6.4. Device Tree Probing

DFX in place, Enzian could provide similar functionality as the Alveo cards
in a cloud environment.

6.4 Device Tree Probing

The Vitis Linux driver is usually loaded via Device Tree bindings on officially
supported platforms. In our implementation, we created a kernel module
that adds a dummy device so that the Linux driver probes successfully. It
would be little effort to extend the Enzian UEFI image and add the necessary
nodes to the device tree. After the correct nodes are present, the Linux driver
would probe automatically and the Vitis workflow would not be interrupted
by loading an additional kernel module.

6.5 Shared Virtual Memory (SVM)

The architecture of Enzian, with its coherent interconnect, is well suited to
implement Shared Virtual Memory (SVM). The basic idea of SVM is that
the host and the device have a common virtual address space. This makes
it possible to share complex data structures such as lists or trees between
the host and a kernel. SVM does not only simplify OpenCL programming
but could also increase performance. The OpenCL standard introduced
SVM in Version 2.0 [16], and Vitis supports SVM on some Edge devices.
Enabling SVM on Enzian would allow for a fine-grained interaction between
the host and the kernel. This fine-grained interaction could give rise to novel
programming patterns for CPU/FPGA-based systems.

81

Appendix A

Acronyms

XSA Xilinx Support Archive . 25
BSP Board Support Package . 25
PS Processing System . 28
PL Programmable Logic . 28
XSCT Xilinx Software Command-Line Tool 38
CU Compute Unit . 15
SLR Super Logic Region . 15
XRT Xilinx Runtime . 15
ICD Installable Client Driver . 16
DFX Dynamic Function eXchange 82
BO Buffer Object . 18
CMA Continuous Memory Allocator 18
KDS Kernel Domain Scheduler . 18
ECI Enzian Coherent Interconnect 10
DKMS Dynamic Kernel Module Support 53
SVM Shared Virtual Memory . 83

83

Appendix B

Example Code

Listing B.1: Example of a host application [60]

#define cl_hpp_cl_1_2_default_build

#define cl_hpp_enable_exceptions

#include <vector >

#include <iostream >

#include <cl/opencl.hpp >

char *read_binary_file(const std:: string

&xclbin_file_name , unsigned &nb);

int main()

{

std:: string binaryFile = argv [1];

std::vector <cl::Platform > platforms;

cl:: Platform ::get(& platforms);

cl:: Platform platform = platforms.front ();

std::vector <cl::Device > devices;

platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR ,

&devices);

cl:: Device device = devices.front ();

cl:: Context context(device);

cl:: CommandQueue q(context , device);

int fileSize;

85

B. Example Code

char *file = read_binary_file(binaryFile ,

fileSize);

cl:: Program :: Binaries bins{{file , fileSize }};

cl:: Program program(context , device , bins);

cl:: Kernel kernel(program , "vadd");

int size = 32;

std::vector <int > in(size);

std::vector <int > out(size);

std::fill(in.begin(), in.end(), 42);

std::fill(out.begin(), out.end(), 0);

int size_in_bytes = sizeof(int) * size;

cl:: Buffer in_buf(context , CL_MEM_READ_ONLY ,

size_in_bytes);

cl:: Buffer out_buf(context , CL_MEM_WRITE_ONLY ,

size_in_bytes);

kernel.setArg(0, in_buf);

kernel.setArg(1, out_buf);

kernel.setArg(2, size);

q.enqueueWriteBuffer(in_buf , CL_TRUE , 0,

size_in_bytes , in.data ());

q.enqueueTask(kernel);

q.finish ();

q.enqueueReadBuffer(out_buf , CL_TRUE , 0,

size_in_bytes , out.data ());

verify_result (&in, &out);

}

char *read_binary_file(const std:: string

&xclbin_file_name , unsigned &nb)

{

std:: ifstream bin_file(xclbin_file_name.c_str(),

std:: ifstream :: binary);

bin_file.seekg(0, bin_file.end);

nb = bin_file.tellg ();

bin_file.seekg(0, bin_file.beg);

char *buf = new char[nb];

bin_file.read(buf , nb);

86

return buf;

}

Listing B.2: Program to test the OpenCL platform layer

// g++ -Wall cl_platform.cpp -o ./ cl_platform -

lOpenCL

#define CL_HPP_CL_1_2_DEFAULT_BUILD

#define CL_HPP_TARGET_OPENCL_VERSION 120

#define CL_HPP_MINIMUM_OPENCL_VERSION 120

#define CL_USE_DEPRECATED_OPENCL_1_2_APIS

#define CL_HPP_ENABLE_EXCEPTIONS

#include <vector >

#include <iostream >

#include <CL/cl2.hpp >

int main()

{

std::vector <cl::Platform > platforms;

cl:: Platform ::get(& platforms);

std::cout << platforms.size() << " platform(s)

detected" << std::endl;

for (auto p : platforms) {

std::cout << "CL_PLATFORM_NAME: " << p.

getInfo <CL_PLATFORM_NAME >() << std::endl;

std::cout << "CL_PLATFORM_VENDOR: " << p.

getInfo <CL_PLATFORM_VENDOR >() << std::endl

;

std::cout << "CL_PLATFORM_VERSION: " << p.

getInfo <CL_PLATFORM_VERSION >() << std::

endl;

std::cout << "CL_PLATFORM_PROFILE: " << p.

getInfo <CL_PLATFORM_PROFILE >() << std::

endl;

std::cout << "CL_PLATFORM_EXTENSIONS: " << p.

getInfo <CL_PLATFORM_EXTENSIONS >() << std::

endl;

}

cl:: Platform platform = platforms.front();

std::cout << std::endl << "---" << std::endl <<

std::endl;

87

B. Example Code

std::vector <cl::Device > devices;

platform.getDevices(CL_DEVICE_TYPE_ALL , &devices)

;

std::cout << devices.size() << " device(s)

detected" << std::endl;

for (auto d : devices) {

std::cout << "CL_DEVICE_NAME: " << d.getInfo <

CL_DEVICE_NAME >() << std::endl;

std::cout << "CL_DEVICE_AVAILABLE: " << d.

getInfo <CL_DEVICE_AVAILABLE >() << std::

endl;

std::cout << "CL_DEVICE_VERSION: " << d.

getInfo <CL_DEVICE_VERSION >() << std::endl;

std::cout << "CL_DEVICE_VENDOR: " << d.

getInfo <CL_DEVICE_VENDOR >() << std::endl;

std::cout << "CL_DRIVER_VERSION: " << d.

getInfo <CL_DRIVER_VERSION >() << std::endl;

std::cout << "CL_DEVICE_TYPE: " << "

CL_DEVICE_TYPE_ACCELERATOR" << std::endl;

std::cout << "CL_DEVICE_EXTENSIONS: " << d.

getInfo <CL_DEVICE_EXTENSIONS >() << std::

endl;

std::cout << "CL_DEVICE_IMAGE_SUPPORT: " << d

.getInfo <CL_DEVICE_IMAGE_SUPPORT >() << std

::endl;

std::cout << "CL_DEVICE_COMPILER_AVAILABLE: "

<< d.getInfo <CL_DEVICE_COMPILER_AVAILABLE

>() << std::endl;

std::cout << "CL_DEVICE_ADDRESS_BITS: " << d.

getInfo <CL_DEVICE_ADDRESS_BITS >() << std::

endl;

std::cout << "CL_DEVICE_GLOBAL_MEM_SIZE: " <<

d.getInfo <CL_DEVICE_GLOBAL_MEM_SIZE >() <<

std::endl;

std::cout << "CL_DEVICE_LOCAL_MEM_SIZE: " <<

d.getInfo <CL_DEVICE_LOCAL_MEM_SIZE >() <<

std::endl;

std::cout << "CL_DEVICE_MAX_CLOCK_FREQUENCY:

" << d.getInfo <

CL_DEVICE_MAX_CLOCK_FREQUENCY >() << std::

endl;

std::cout << "CL_DEVICE_MAX_COMPUTE_UNITS: "

<< d.getInfo <CL_DEVICE_MAX_COMPUTE_UNITS

>() << std::endl;

88

std::cout << "CL_DEVICE_MAX_MEM_ALLOC_SIZE: "

<< d.getInfo <CL_DEVICE_MAX_MEM_ALLOC_SIZE

>() << std::endl;

std::cout << "CL_DEVICE_MAX_WORK_GROUP_SIZE:

" << d.getInfo <

CL_DEVICE_MAX_WORK_GROUP_SIZE >() << std::

endl;

std::cout << "

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: " << d

.getInfo <

CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS >() <<

std::endl;

std::cout << "CL_DEVICE_MEM_BASE_ADDR_ALIGN:

" << d.getInfo <

CL_DEVICE_MEM_BASE_ADDR_ALIGN >() << std::

endl;

std::cout << "

CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE: " << d

.getInfo <

CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE >() <<

std::endl;

}

cl:: Device device = devices.front();

std::cout << std::endl << "---" << std::endl <<

std::endl;

cl:: Context context(device);

std::cout << "Context successfully created" <<

std::endl;

}

89

Appendix C

CLI Tools Output

Listing C.1: Output of platforminfo enzian.xpfm

==========================

Basic Platform Information

==========================

Platform: enzian_v2_top

File: enzian.xpfm

Description:

enzian_v2_top

=====================================

Hardware Platform (Shell) Information

=====================================

Vendor: ethz

Board: enzian

Name: enzian

Version: 0.0

Generated Version: 2020.1

Software Emulation: 1

Hardware Emulation: 0

FPGA Family: virtexuplus

FPGA Device: xcvu9p

Board Vendor: xilinx.com

Board Name: xilinx.com:vcu118 :2.0

Board Part: xcvu9p -flga2104 -2L-e

Maximum Number of CU: 60

=================

Clock Information

91

C. CLI Tools Output

=================

Default Clock Index: 0

Clock Index: 0

Frequency: 300.000000

Clock Index: 1

Frequency: 300.000000

==================

Memory Information

==================

Bus SP Tag: gmem

=======================

Feature ROM Information

=======================

=============================

Software Platform Information

=============================

Number of Runtimes: 1

Default System Configuration: enzian_v2_top

System Configurations:

System Config Name: enzian

System Config Description: enzian

System Config Default Processor Group: domain_cpu

System Config Default Boot Image: standard

System Config Is QEMU Supported: 0

System Config Processor Groups:

Processor Group Name: domain_cpu

Processor Group CPU Type: cpu

Processor Group OS Name: standalone

System Config Boot Images:

Boot Image Name: standard

Boot Image Type:

Boot Image Data:

Boot Image Boot Mode:

Boot Image RootFileSystem:

Boot Image Mount Path:

Boot Image QEMU Args:

Boot Image QEMU Boot:

Boot Image QEMU Dev Tree:

Supported Runtimes:

Runtime: C/C++

92

Listing C.2: Output of kernelinfo vadd.xo

=== Kernel Definition ===

name: vadd

language: c

vlnv: xilinx.com:hls:vadd :1.0

preferredWorkGroupSizeMultiple: 0

workGroupSize: 1

debug: true

containsDebugDir: 1

sourceFile: vadd/cpu_sources/vadd.cpp

=== Arg ===

name: in

addressQualifier: 1

id: 0

port: M_AXI_GMEM

size: 0x8

offset: 0x20

hostOffset: 0x0

hostSize: 0x8

type: void*

=== Arg ===

name: out

addressQualifier: 1

id: 1

port: M_AXI_GMEM

size: 0x8

offset: 0x30

hostOffset: 0x0

hostSize: 0x8

type: void*

=== Arg ===

name: size

addressQualifier: 0

id: 2

port: S_AXI_CONTROL

size: 0x8

offset: 0x40

hostOffset: 0x0

hostSize: 0x4

type: unsigned long long

=== Port ===

name: M_AXI_GMEM

mode: master

93

C. CLI Tools Output

range: 0xFFFFFFFF

dataWidth: 32

portType: addressable

base: 0x0

=== Port ===

name: S_AXI_CONTROL

mode: slave

range: 0x1000

dataWidth: 64

portType: addressable

base: 0x0

94

Bibliography

[1] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan
Kara, Dario Korolija, David Sidler, and Zeke Wang. Tackling hardware/-
software co-design from a database perspective. 2020.

[2] Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/

instance-types/f1/. Accessed: 2021-06-23.

[3] AMD. AMD ROCm. https://rocmdocs.amd.com/en/latest/. Ac-
cessed: 2021-08-19.

[4] Aparapi. Aparapi. https://aparapi.com/. Accessed: 2021-08-19.

[5] ARM. AMBA AXI and ACE Protocol Specification AXI3, AXI4,
and AXI4-Lite ACE and ACE-Lite. https://developer.arm.com/

documentation/ihi0022/e/?lang=en. Accessed: 2021-07-13.

[6] Roland Brochard. FreeOCL. http://www.zuzuf.net/FreeOCL/. Ac-
cessed: 2021-08-19.

[7] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In
The 49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-49. IEEE Press, 2016.

[8] Linux Community. Linux Direct Rendering Manager (DRM). https:

//www.kernel.org/doc/html/v5.4/gpu/drm-mm.html. Accessed: 2021-
08-02.

95

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://rocmdocs.amd.com/en/latest/
https://aparapi.com/
https://developer.arm.com/documentation/ihi0022/e/?lang=en
https://developer.arm.com/documentation/ihi0022/e/?lang=en
http://www.zuzuf.net/FreeOCL/
https://www.kernel.org/doc/html/v5.4/gpu/drm-mm.html
https://www.kernel.org/doc/html/v5.4/gpu/drm-mm.html

Bibliography

[9] Linux Community. Linux FPGA subsystem. https://www.kernel.org/
doc/html/latest/driver-api/fpga/intro.html. Accessed: 2021-08-
12.

[10] Tomasz S Czajkowski, David Neto, Michael Kinsner, Utku Aydonat,
Jason Wong, Dmitry Denisenko, Peter Yiannacouras, John Freeman, De-
shanand P Singh, and Stephen D Brown. Opencl for fpgas: Prototyping
a compiler. In Proceedings of the International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), page 1. The Steering
Committee of The World Congress in Computer Science, Computer . . . ,
2012.

[11] Vincent Danjean. OpenCL ICD Loader. https://github.com/OCL-dev/
ocl-icd. Accessed: 2021-08-17.

[12] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams,
Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz,
Lisa Woods, Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caulfield,
Eric S. Chung, and Doug Burger. A configurable cloud-scale dnn pro-
cessor for real-time ai. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, page 1–14. IEEE Press,
2018.

[13] Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and
Dana Schaa. Heterogeneous Computing with OpenCL. 2nd edition, 2013.

[14] Khronos Group. OpenCL API Headers. https://github.com/

KhronosGroup/OpenCL-Headers. Accessed: 2021-08-17.

[15] Khronos Group. OpenCL ICD Loader. https://github.com/

KhronosGroup/OpenCL-ICD-Loader. Accessed: 2021-08-17.

[16] Krohnos Group. OpenCL Specification 2.0 Shared Virtual Mem-
ory. https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.
pdf#page=167. Accessed: 2021-08-23.

[17] Krohnos Group. Vector Data Types. https://www.khronos.org/

registry/OpenCL/sdk/1.2/docs/man/xhtml/vectorDataTypes.html.
Accessed: 2021-08-20.

[18] Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia de Gonzalo,
Juan Gómez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, De-
jan Milojicic, Onur Mutlu, Deming Chen, and Wen-mei Hwu. Analysis
and modeling of collaborative execution strategies for heterogeneous

96

https://www.kernel.org/doc/html/latest/driver-api/fpga/intro.html
https://www.kernel.org/doc/html/latest/driver-api/fpga/intro.html
https://github.com/OCL-dev/ocl-icd
https://github.com/OCL-dev/ocl-icd
https://github.com/KhronosGroup/OpenCL-Headers
https://github.com/KhronosGroup/OpenCL-Headers
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf#page=167
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf#page=167
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/vectorDataTypes.html
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/vectorDataTypes.html

Bibliography

cpu-fpga architectures. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, ICPE ’19, page 79–90, New York,
NY, USA, 2019. Association for Computing Machinery.

[19] Intel. Hardware Accelerator Research Program (HARP). https://wiki.
intel-research.net/index.html. Accessed: 2021-08-19.

[20] Intel. Intel FPGA SDK for OpenCL. https://www.intel.com/content/
www/us/en/software/programmable/sdk-for-opencl/overview.

html. Accessed: 2021-08-19.

[21] Intel. Intel OpenCL SDK. https://software.intel.com/content/www/
us/en/develop/tools/opencl-sdk.html. Accessed: 2021-08-19.

[22] Keerthan Jaic and Melissa C. Smith. Enhancing hardware design flows
with myhdl. In Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’15, page 28–31, New
York, NY, USA, 2015. Association for Computing Machinery.

[23] Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan,
Qingxu Deng, Wei Zhang, and Onur Mutlu. Boyi: A systematic frame-
work for automatically deciding the right execution model of opencl
applications on fpgas. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’20, page 299–309,
New York, NY, USA, 2020. Association for Computing Machinery.

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,
Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International Symposium

97

https://wiki.intel-research.net/index.html
https://wiki.intel-research.net/index.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html
https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html

Bibliography

on Computer Architecture, ISCA ’17, page 1–12, New York, NY, USA, 2017.
Association for Computing Machinery.

[25] Pekka Jääskeläinen, Carlos Lama, Erik Schnetter, Kalle Raiskila, Jarmo
Takala, and Heikki Berg. pocl: A Performance-Portable OpenCL Imple-
mentation. International Journal of Parallel Programming, August 2014.

[26] David R. Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang.
Heterogeneous Computing with OpenCL 2.0. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2015.

[27] Khronos. OpenCL Conformance Tests. https://github.com/

KhronosGroup/OpenCL-CTS. Accessed: 2021-08-29.

[28] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. Pycuda and pyopencl: A scripting-based
approach to gpu run-time code generation. Parallel Computing, 38(3):157–
174, 2012.

[29] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do OS abstrac-
tions make sense on FPGAs? In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 991–1010. USENIX
Association, November 2020.

[30] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[31] Microsoft. Project Catapult. https://www.microsoft.com/en-us/

research/project/project-catapult/. Accessed: 2021-08-19.

[32] Vincent Mirian and Paul Chow. An implementation of a directory
protocol for a cache coherent system on fpgas. In 2012 International
Conference on Reconfigurable Computing and FPGAs, pages 1–6, 2012.

[33] Vincent Mirian and Paul Chow. Using an opencl framework to evalu-
ate interconnect implementations on fpgas. In 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), pages 1–4,
2014.

[34] Vincent Mirian and Paul Chow. Evaluating shared virtual memory in an
opencl framework for embedded systems on fpgas. In 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), pages
1–8, 2015.

98

https://github.com/KhronosGroup/OpenCL-CTS
https://github.com/KhronosGroup/OpenCL-CTS
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/

Bibliography

[35] Vincent Mirian and Paul Chow. Exploring pipe implementations using
an opencl framework for fpgas. In 2015 International Conference on Field
Programmable Technology (FPT), pages 112–119, 2015.

[36] Vincent Mirian and Paul Chow. Ut-ocl: an opencl framework for em-
bedded systems using xilinx fpgas. In 2015 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–6, 2015.

[37] Vincent Mirian and Paul Chow. Enabling fpgas as a true device in the
opencl standard: Bridging the gap for fpgas. In Proceedings of the 5th
International Workshop on OpenCL, IWOCL 2017, New York, NY, USA,
2017. Association for Computing Machinery.

[38] Marziyeh Nourian, Mostafa Eghbali Zarch, and Michela Becchi. Opti-
mizing complex opencl code for fpga: A case study on finite automata
traversal. In 2020 IEEE 26th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pages 518–527, 2020.

[39] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Sri-
vatsan, Duncan Moss, Suchit Subhaschandra, and Guy Boudoukh. Can
fpgas beat gpus in accelerating next-generation deep neural networks?
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, page 5–14, New York, NY, USA,
2017. Association for Computing Machinery.

[40] Nvidia. Nvidia OpenCL SDK. https://developer.nvidia.com/

opencl. Accessed: 2021-08-19.

[41] Khronos OpenCL. OpenCL ICD Installation Guidelines.
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/

OpenCL_ICD_Installation.pdf. Accessed: 2021-06-30.

[42] Abishek Ramdas, David Cock, Timothy Roscoe, and Gustavo Alonso.
The Enzian Coherent Interconnect (ECI): opening a coherence protocol
to research and applications. In LATTE 21 Workshop on Languages, Tools,
and Techniques for Accelerator Design, 2021.

[43] Ciro Santilli. Pagemap Script. https://github.com/cirosantilli/

linux-kernel-module-cheat/blob/master/lkmc/pagemap.h. Ac-
cessed: 2021-08-12.

[44] Oren Segal, Philip Colangelo, Nasibeh Nasiri, Zhuo Qian, and Martin
Margala. Sparkcl: A unified programming framework for accelerators
on heterogeneous clusters, 2015.

99

https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_ICD_Installation.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_ICD_Installation.pdf
https://github.com/cirosantilli/linux-kernel-module-cheat/blob/master/lkmc/pagemap.h
https://github.com/cirosantilli/linux-kernel-module-cheat/blob/master/lkmc/pagemap.h

Bibliography

[45] Oren Segal, Martin Margala, Sai Rahul Chalamalasetti, and Mitch Wright.
High level programming framework for fpgas in the data center. In 2014
24th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–4, 2014.

[46] Takefumi Miyoshi. Synthesijer. https://synthesijer.github.io/web/.
Accessed: 2021-08-19.

[47] Yohann Uguen and Eric Petit. Pyga: A python to fpga compiler proto-
type. In Proceedings of the 5th ACM SIGPLAN International Workshop on
Artificial Intelligence and Empirical Methods for Software Engineering and
Parallel Computing Systems, AI-SEPS 2018, page 11–15, New York, NY,
USA, 2018. Association for Computing Machinery.

[48] Various. An open, general, cpu/fpga platform for os research. submitted,
2021.

[49] Wikipedia. Advanced eXtensible Interface. https://en.wikipedia.

org/wiki/Advanced_eXtensible_Interface. Accessed: 2021-07-19.

[50] Mike Wuerthele. OpenGL, OpenCL deprecated in favor of Metal 2 in ma-
cOS 10.14 Mojave. https://appleinsider.com/articles/18/06/04/

opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave.
Accessed: 2021-08-19.

[51] Xilinx. Alveo U200 and U250 Data Center Accelerator Cards
Data Sheet. https://www.xilinx.com/content/dam/xilinx/support/
documentation/data_sheets/ds962-u200-u250.pdf. Accessed: 2021-
08-23.

[52] Xilinx. C++ Arbitrary Precision Integer Types. https://www.xilinx.

com/html_docs/xilinx2021_1/vitis_doc/integer_types.html. Ac-
cessed: 2021-08-22.

[53] Xilinx. Dynamic Function eXchange UG909. https://www.

xilinx.com/support/documentation/sw_manuals/xilinx2021_1/

ug909-vivado-partial-reconfiguration.pdf. Accessed: 2021-08-23.

[54] Xilinx. Enabling Hardware Emulation for Extensible XSA.
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/

create_embedded_platforms.html#zuc1604356222330. Accessed:
2021-08-23.

[55] Xilinx. SmartConnect LogiCORE IP Product Guide PG247. https:

//www.xilinx.com/support/documentation/ip_documentation/

smartconnect/v1_0/pg247-smartconnect.pdf. Accessed: 2021-08-20.

100

https://synthesijer.github.io/web/
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave
https://www.xilinx.com/content/dam/xilinx/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/data_sheets/ds962-u200-u250.pdf
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/integer_types.html
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/integer_types.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/create_embedded_platforms.html#zuc1604356222330
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/create_embedded_platforms.html#zuc1604356222330
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf

Bibliography

[56] Xilinx. Systolic Array Implementation (OpenCL Kernel).
https://github.com/Xilinx/Vitis_Accel_Examples/tree/2020.

1/ocl_kernels/cl_systolic_array. Accessed: 2021-08-23.

[57] Xilinx. Using Vitis Embedded Processor Platforms. https:

//www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/

hcb1561793640896.html. Accessed: 2021-07-22.

[58] Xilinx. Vitis Array Data Transfer Modes. https://www.xilinx.com/

html_docs/xilinx2020_1/hls-guidance/qoa1585574520885.html.
Accessed: 2021-08-20.

[59] Xilinx. Vitis Compiler Command Reference. https://www.xilinx.com/
html_docs/xilinx2020_1/vitis_doc/vitiscommandcompiler.html#

wrj1504034328013. Accessed: 2021-08-02.

[60] Xilinx. Vitis Getting Started. https://github.com/Xilinx/

Vitis-Tutorials/blob/master/Getting_Started/Vitis/example/

src/host.cpp. Accessed: 2021-08-23.

[61] Xilinx. Vitis Host Application. https://www.xilinx.com/html_docs/
xilinx2020_1/vitis_doc/devhostapp.html. Accessed: 2021-06-30.

[62] Xilinx. Vitis Unified Software Platform. https://www.xilinx.

com/products/design-tools/vitis/vitis-platform.html. Accessed:
2021-08-20.

[63] Xilinx. Vits HLS Configuration Commands. https://www.xilinx.com/
html_docs/xilinx2020_1/vitis_doc/vyw1583260160301.html. Ac-
cessed: 2021-08-06.

[64] Xilinx. Xilinx Runtime. https://xilinx.github.io/XRT/2020.1/

html/index.html. Accessed: 2021-08-02.

[65] Xilinx. XRT Github. https://github.com/Xilinx/XRT. Accessed: 2021-
08-02.

[66] Xilinx. XRT Native APIs. https://xilinx.github.io/XRT/2021.1/

html/xrt_native_apis.html. Accessed: 2021-08-19.

101

https://github.com/Xilinx/Vitis_Accel_Examples/tree/2020.1/ocl_kernels/cl_systolic_array
https://github.com/Xilinx/Vitis_Accel_Examples/tree/2020.1/ocl_kernels/cl_systolic_array
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hcb1561793640896.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hcb1561793640896.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/hcb1561793640896.html
https://www.xilinx.com/html_docs/xilinx2020_1/hls-guidance/qoa1585574520885.html
https://www.xilinx.com/html_docs/xilinx2020_1/hls-guidance/qoa1585574520885.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/vitiscommandcompiler.html#wrj1504034328013
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/vitiscommandcompiler.html#wrj1504034328013
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/vitiscommandcompiler.html#wrj1504034328013
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/example/src/host.cpp
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/example/src/host.cpp
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Getting_Started/Vitis/example/src/host.cpp
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/devhostapp.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/devhostapp.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/vyw1583260160301.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/vyw1583260160301.html
https://xilinx.github.io/XRT/2020.1/html/index.html
https://xilinx.github.io/XRT/2020.1/html/index.html
https://github.com/Xilinx/XRT
https://xilinx.github.io/XRT/2021.1/html/xrt_native_apis.html
https://xilinx.github.io/XRT/2021.1/html/xrt_native_apis.html

