
Bachelor’s Thesis Nr. 335b

Systems Group, Department of Computer Science, ETH Zurich

Real-time Board Management using an FPGA

by

Sarah Tröndle

Supervised by

Dr. Michael Giardino
Daniel Schwyn

Prof. Dr. Timothy Roscoe

October 2020 – April 2021

Abstract

Server-level computers usually have a BMC (baseboard manage-
ment controller), that is responsible for setting up and maintaining an
environment where all of the components of a system can function.
This includes time sensitive tasks like triggering an emergency shut-
down of a component or the whole system. The Enzian BMC runs
based on OpenBMC, one of the few open source BMC projects. It is
based on python scripts communication over D-Bus. This entails that
there are no strong timing guarantees. Thus, the goal is to achieve
real-time board management with the BMC’s FPGA.

This thesis examines the feasibility of that goal by implementing
and testing a PID-based fan control on Enzian’s BMC FPGA. The
functioning PID controller shows that FPGA board management is
possible. It also exposes difficulties that still have to be overcome,
when board management tasks should be handled exclusively by the
FPGA. The main difficulty lies in communication between the BMC
FPGA and other devices on Enzian.

1

Contents

1 Introduction 4

1.1 The BMC . 4
1.2 Goal . 5

2 Related Work 6

3 Approach 9

4 PID Controller Background 10

5 Integrating a PID controller into the Enzian BMC 12

6 Implementation of the PID Controller 14

6.1 Calculations done by the PID controller 14
6.2 Handling Asynchrony . 16
6.3 Tuning and Testing the PID controller 17

7 Conclusion 20

2

List of Figures

1 Parallel design of an FPGA PID controller [1] 8
2 Block diagram of a PID controller, with feedback loop 10
3 Diagram of the ideal integration of the PID controller into

Enzian . 12
4 Diagram of the integration of the PID controller into Enzian 13
5 Simplified block diagram of the PID controller 16
6 Set up for testing the PID fan controller 17
7 Temperature in ◦C and fan speed in duty cycle over time . . 19

3

1 Introduction

1.1 The BMC

For a computer to run it requires a certain range of voltage, temperature
control and more. This is not related to the execution of a program or the
operating system, but setting up and maintaining an environment where all
of the components of the computer can function. In server systems this is
usually handled by the Baseboard Management Controller (BMC), which is
placed on its own chip.

The exact workings of the BMC, including the software, are typically
manufacturer specific and proprietary. This has lead to there being little
research on an essential part of increasingly complex computers. There are,
however, known tasks the BMC is commonly responsible for: [2]

Health monitoring and management The BMC monitors the health of
the system, for example with temperature sensors and fault monitors.
The aquired information can be used for recovery or response mecha-
nisms. Often the information is accessible through a web interface.

Data collection and logging Beyond what is necessary for health man-
agement, the BMC collects data about the state of the hardware.
Based on this data it often can produce alerts or notifications.

Booting During booting, the BMC can be responsible for managing the
clock and power resources and installing software, like firmware, a
CPU needs to boot.

Remote access Services of the BMC are usually available over a network
or interface.

The work for this thesis is done on Enzian’s BMC. Enzian is a research
computer built by the Systems Group at ETH Zürich. It has a 48-core CPU,
a large FPGA, 640 GiB of DDR4 RAM and up to 460Gb/s network band-
width. The BMC that manages all of the components was also developed
by the Systems Group. It is a Enclustra Mercury SoM with a Xilinx Zynq
MPSoc CPU running Linux. Its software is based on OpenBMC which runs
with python scripts and D-Bus.

One of the BMC’s main task is to manage the power supply to the
CPU and FPGA by configuring devices like clock generators and voltage
regulators before the CPU and FPGA are started. The devices themselves
also have to be started in a specific sequence. This too is handled by the
BMC. Furthermore, it also controls fans and monitors sensor readings sent
from devices over I2C. Additionally, the BMC is responsible for handling
SMBus alerts that are sent from devices. During booting, the BMC can
program the FPGA with an initial bitstream and access the flash memory,
which is used to boot the CPU. [2]

4

1.2 Goal

Since the BMC software is based on python with D-Bus, there are no timing
guarantees. This software, however, has to handle critical tasks such as
triggering an emergency shut down of a component or the whole system.
With the absence of timing guarantees, there is also no guarantee, that the
BMC can react fast enough to prevent faults from occurring. The lack of
such guarantees is concerning, especially for a research computer that was
built with a high-end CPU and FPGA. To be able to have timing guarantees,
the goal is to achieve real-time board management with the BMC’s FPGA.
This thesis examines the feasibility of that goal with fan control as a test
case. In doing so, the intended approach can be tested for its applicability
and potential difficulties of doing board management with an FPGA can be
discovered.

5

2 Related Work

To the best of our knowledge, there has not been any work published that
specifically looks at using an FPGA to do real-time board management.
Other aspects of a BMC have, however, been researched. Work on using the
FPGA for some of the BMC’s tasks has also been published. After present-
ing an article on the state of BMC software, work on different aspects of
power management and using an FPGA to do tasks of a BMC are presented.

In his article Frazelle gives an overview over the current state of BMC
software. The article mentions that the intelligent platform management
interface (IPMI), which BMCs usually use to communicate to the outside
world, was designed with the idea that data center control networks would
be segregated and trusted. They are, however, not segregated and hence,
cannot be trusted. This has lead to IPMI being notorious for security vulner-
abilities. In the context of security vulnerability the article also discusses
BMC software mostly being proprietary. The author describes it as ”an
alarming problem that the code running with the most privilege has the
least visibility and inspectability”. There are, however, open source BMC
software projects, as Franzelle writes. One of them is OpenBMC, which is
based on two projects with the same name, one founded by Facebook and
the other by IBM and Rackspace. As mentioned in the Introduction, the
Enzian BMC uses openBMC. [3]

Dynamic power management regulates how much power a component
of a system gets, depending on the required performance. There are mul-
tiple known methods to achieve this. An example is HP’s PaperClip, an
electronic clipboard. Its system-level dynamic power management policy
has been described in [4]. A power management module, that runs on the
CPU, predicts when the power should be reduced. It then writes commands
to memory-mapped I/O locations. The power management commands are
then decoded by control circuit implemented on an FPGA and distributed
from there. Many of the approaches to power management algorithms are
described with finite state machines. These describe the different power
states a machine can be in, for example idle, run and sleep, and when to
transition between those. These different power states can be reached with
clock gating, where the clock frequency or the voltage supply is reduced.
Since power is proportional to the frequency and the square of the supply
voltage, often reducing the voltage is preferred. However, this is usually
combined with frequency downscaling. Alternatively, the power supply can
be completely shut down to individual components. [5]

6

Pozniak et al. proposed a FPGA based platform control board (PCB)
for low level radio frequency control systems. [6] The platform controller
(PC) is the main part of the PCB and consists of three modules:

❼ VME-bus controller: passive controller for VME-bus communication

❼ PC-embedded controller: optional communication module for control
operations over LLRF, signal processing and monitoring

❼ Data & timing controller: distribution of fast and synchronous signals.

The data & timing controller is implemented in a programmable chip. The
distributed synchronous signals are divided into clock signals and triggering
signals. They have separate lines that supply all module slots. For the data
signal the data & timer controller has a bus connection to each slot, how-
ever, the slots are also connected between each other. [6]

Another aspect of board management is ensuring that the supplied volt-
age to each component stays in a range that allows it to function without
any faults occurring. One way this has been done is with a combination
of numerical relays and FPGAs. A numerical relay can monitor analogue
inputs like current or voltage by transforming them to digital signals and
processing the digital signals, commonly with a microprocessor. The FPGA
is then programmed with algorithms that have conditioned signals from the
numerical relay as inputs, calculate a cut-off and generate control signals for
the relay unit. The relay unit can then, if necessary, cut the unit off from
the power supply. [7]

Fan Control, another task of the BMC, has also been done with an
FPGA. Daboul and Nouman implemented a DC fan controller on a FPGA,
outputting a PWM (pulse width modulation) signal. This functions on the
basis of comparing the value describing the required fan speed with a trian-
gular wave signal. The focus of this work is on producing a signal to directly
power the fan. [8]

Other work focuses on calculating the required fan speed based on a
measured temperature. Chan et al. present a modular feedback controller,
which can be adapted for different use cases. The presented application is a
temperature control system. An ADC (analogue-to-digital converter) inter-
face converts an analogue signal from a thermistor and passes it to the PID
(proportional-integral-derivative) controller. The PID controller is based on
distributed arithmetic and implemented on an FPGA. Its output are PWM
signals for the fan motor and the lamp to lower or increase the temperature.
[9]

7

Figure 1: Parallel design of an FPGA PID controller [1]

Another approach to FPGA based PID controllers is presented by Kocur,
Kozak and Dvorscak. Here the focus is not the whole control loop but mainly
the PID controller on the FPGA. In comparison to the previously mentioned
controller there is less focus on obtaining a space efficient algorithm and more
focus on implementing a known discrete PID algorithm. The design they
propose is parallel, visible in figure 1, and described in more detail than the
design presented by Chan. [1]

8

3 Approach

Previous works related to the goal of achieving real-time board management
with an FPGA only covers aspects of it in isolation. The elements of the
presented control circuits are directly connected. On the Enzian, however,
even the different tasks of the BMC, like voltage or temperature control,
cannot be viewed in isolation. Most sensors and regulators the BMC relies
on are not located within the BMC, but across the whole system. Therefore,
to examine the feasibility of real-time board management on the FPGA,
different tasks of the BMC can be explored separately with regards of using
the FPGA to handle them. However, they always have to be viewed in the
context of the whole system. Considering that fan control with an FPGA
has already been done, we decided on using this example to explore what
is necessary to realise board management on an FPGA on a system like
the Enzian. Controlling the temperature with a fan has also the advantage
that testing it is much more feasible than testing what happens if the power
supply behaves in unexpected ways.

Since the goal is to test how control logic on the FPGA can interact
with the whole system, we use a PID controller to determine the required
fan speed. It is a reasonable approach to do fan control with an FPGA as
it uses an input to calculate an output value, that is sent on as a control
signal. Allowing to see how a controller can be integrated into the system,
communicating with other components.

9

Figure 2: Block diagram of a PID controller, with feedback loop

4 PID Controller Background

A proportional-integral-derivative (PID) controller is a commonly used con-
troller to bring a system towards an objective, the set point. Depending
on the system, that could for example be a temperature, a certain speed
or a position. A PID controller uses a closed-loop system. Its input is the
feedback-signal from the process under control. As the name suggests the
PID controller is based on three parts:

Proportional Controller The P-part results in an output proportional
to the current error e(t), where the error is the difference between the
set-point and the feedback.

Integral Controller The integral controller is responsible for eliminating
the possibility of a steady-state error. This can occur when with the
control value of the proportional part the system ends up in a steady
state before the set-point is reached. By adding a value proportional
to the integral of previous error,

∫ t

0
e(τ)dτ , the I-part of the control

value keeps increasing, preventing the system from being stuck in a
steady state.

Derivative Controller The integral controller cannot predict the future
behaviour of the error. As long as there is an error, the I-part increases.
This causes an overshoot when the set-point is reached, since at the
set point the P-part is 0 but the I-part is not. This is countered with
the differential part. With the P-part proportional to the derivative of
the error, the output of the differential controller gets more and more
negative, the faster the error decreases.

As shown in figure 2, the results of the three parts are added together,
resulting in the command signal u(t). The PID equation can then be written
as

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de

dt

where Kp,Ki,Kd are the proportional, integral and derivative gains. [10] It

10

can also be written as

u(t) = Kp

(

(t) +
1

Ti

∫ t

0

e(τ)dτ + Td

de(t)

dt

)

where Ti, Td are the integral and derivative time constants. [1]
These are continuous equations, hence they are suited for controlling

analogue signals. An FPGA, however, processes digital signals, needing a
discrete equation.

Both PID controller papers presented in section 2 have direct connections
from the analogue to digital converter to the FPGA, allowing them to be
synchronized. In the Enzian the fan controller is connected to the FPGA
over an I2C bus and current temperatures have to be requested. This makes
the problem of providing the PID controller with the input signal in the
correct form more complex. Also, sending out the control signal is non-
trivial.

For this reason implementing a PID fan controller on the Enzian BMC
FPGA is viewed as two problems. Firstly, the communication between the
FPGA and the fan controller (MAX31785) and then, based on the con-
straints this entails, implementing a PID controller on the FPGA.

11

Figure 3: Diagram of the ideal integration of the PID controller into Enzian

5 Integrating a PID controller into the Enzian BMC

The PID controller should take a temperature value as an input and output
the according fan speed. The fan’s speed should be in percentage for the
PWM duty cycle, describing during how much time of one cycle the fan
should be supplied with power. This will then control the fan speed, since
with PWM a device is supplied with power at a specific frequency. Unless
the device is reconfigured this frequency does not change. What changes
is the duty cycle, which can also be described as the ratio between a pulse
width and the period. By increasing the duty cycle, the time during which,
for example, a fan is supplied with voltage is increased. This increases the
total power supplied, which in turn increases the fan speed.

As mentioned, the BMC is not directly connected to the fan controller.
Temperature requests and fan speed commands have to be sent over an I2C
bus. Ideally this could be handled from the FPGA, resulting in a design
shown in figure 3.

This would, however, require the commands for requesting the temper-
ature and setting the fan speed to be produced on the FPGA. This also
includes extracting the temperature from the message sent back by the fan
controller and setting the right channel of the fan controller to reach the
desired diode or fan. This has to be done since 6 fans and diodes can be
connected to the fan controller MAX31785. While there is an I2C implemen-
tation on the FPGA, implementing this would require a lot of work, going
beyond the scope of this bachelor thesis, while not being its main focus. For
this reason communication with the fan controller is handled by the BMC
software on the CPU. There, this is already implemented for the telemetry
and the power service from the power management tools. While this can no
longer result in a real-time system and seems to contradict the goal of using

12

Figure 4: Diagram of the integration of the PID controller into Enzian

the FPGA instead of the CPU to have more reliable speed, it still allows to
examine what is necessary in order to reach that goal. One such necessity
is having the I2C communication protocol with device specific commands
implemented on the FPGA.

Handling I2C communication from the CPU results in a system as shown
in figure 4. A python script (represented by the purple rectangle), that is
added to the power manager, uses the existing power management software
to communicate with the fan controller and the FPGA. The additional script
uses the telemetry service to receive a temperature update every second.
The temperature is then converted to a signed integer format and written to
memory-mapped AXI GPIO. After writing the temperature, the script waits
for 0.1 seconds before reading the calculated fan speed from GPIO. This
delay of 0.1 seconds has been set generously and could still be optimized.
The power and telemetry service communicate based on D-Bus. The D-Bus
commands then get translated to I2C by another part of the power manager.

Constants like gains and set points for the PID controller can be hard-
coded into the FPGA. With there already being a python script that writes
values to the FPGA it made, however, sense to also write them from the
CPU. For the eventual execution of the PID controller this does not make a
difference, but it makes it easier to change constants and allows for a more
convenient tuning of the PID controller. Changing values in a python script
is less time-consuming than regenerating a bitstream.

13

6 Implementation of the PID Controller

The requirements of the PID controller are to take in a temperature value
and then calculate a fan speed with that. The fan speed should be in
percentage for the duty cycle, describing during how much time of one cycle
the fan should be supplied with power. How the PID controller is supplied
with temperature values and how the calculated fan speed is sent to the
fan controller was discussed in section 2. Some of the choices described in
the previous section affect how the PID controller itself has to be designed.
How the values are exchanged between the CPU and the FPGA has the
biggest effect on how the PID controllers presented in the previous work
section have to be adapted to the Enzian BMC. The AXI GPIOs get written
asynchronously meaning that either the whole PID controller has to work
asynchronously or there has to be a step to synchronize the signal. This will
be discussed later in this section.

6.1 Calculations done by the PID controller

Since the goal for the PID controller is not to implement it in the most
effcient way but to use it to see how board management on the FPGA can
work, the PID controller is based on the ones presented in the previous work,
as they have been tested and are known to work. The first approach was to
use the controller presented in [9], since it has been tested for temperature
control. This FPGA PID controller is based on distributed arithmetic and
is space optimized. It calculates the output u(k) the following way:

u(k) = P (k) + I(k) +D(k)

where k is the current instant and P (k), I(k) and D(k) are:

P (k) = K (buc(k)− y(k))

I(k) = I(k − 1) +
K

Ti

(uc(k − 1)− y(k − 1))

D(k) =
Td

Td +NT
D(k − 1)−

KTdN

Td +NT
(y(k)− y(k − 1))

Where y(k) is the feedback signal, uc(k) is the command signal at the cur-
rent instant, K, b, Ti, Td, N are controller parameters and T is the sampling
period.

Using a PID controller that was tested with temperature control made
sense, especially when the formulas behind the PID controller are not the
main focus of the project. However, during an implementation attempt of
the PID controller for this project, the uc was accidentally handled as a
constant. This prompted a revaluation of the idea that using a PID formula
that has been tested with temperature control is better than using a less

14

optimised, more general PID formula. The conclusion, in line with previous
experience, was drawn that a simpler concept is likely faster to implement
and less prone to mistakes.

For this reason the PID controller presented in [1] was then chosen as a
basis for the PID controller on the Enzian BMC FPGA. The control output
u(k) at instance k is calculated as

u(k) = u(k − 1) + q0e(k) + q1e(k − 1) + q2e(k − 2)

where e(k) is the error of the current instance, e(k − 1), e(k − 2) are errors
of the previous 2 instances and q0, q1, q2 are

q0 = P

(

1 +
Td

T

)

q1 = −P

(

1−
T

Ti

+ 2
Td

T

)

q2 = P
Td

T

T is the sample time, P is the proportional gain and Ti, Td are the integral
and derivative time constants. The paper also provides the decomposition
of the equation in a form that can be directly implemented on the FPGA:

e(k) = w(k)− y(k)

p0 = q0 ∗ e(k) p1 = q1 ∗ e(k − 1) p2 = q2 ∗ e(k − 2)

s1 = p0 + p1 s2 = p2 + s1 u(k) = s2 + u(k − 1)

Where w(k) is the set point, y(k) is the feedback at the current instance,
u(k − 1) is the control output of the previous instance and p0, p1, p2, s1, s2
are intermediate results. For fan control the error was redefined as e(k) =
y(k) − w(k), since a temperature that is higher than the set point should
result in a higher fan speed.

The sample time is defined by the telemetry service running on the CPU
and set to one second. This allows to assume T as a constant, making
q0, q1, q2 precomputable. Instead of setting the gains and handling the com-
putation of q0, q1, q2 on the FPGA, they are precomputed on the CPU and
written to an AXI GPIO before starting the fan control. Since there is al-
ready a python script, that writes temperatures to the FPGA (see previous
section) the same script is used to write the q values. Setting the gains
and also the set point in a python script allows them to be changed easily.
Which is especially useful while tuning the controller. This results in the
controller shown in figure 5.

15

Figure 5: Simplified block diagram of the PID controller

6.2 Handling Asynchrony

With the temperature value being written to AXI GPIO once the telemetry
service returns a value, a way had to be found to only calculate a new output
when a value is written. Simply recalculating every clock cycle would not
have worked. The result of recalculating the output once or multiple times
is different, even if the input values are the same, because every time the
output of the previous iteration, u(k − 1), gets added to the new output.
Simply waiting for the temperature value on the GPIO to change is also
not an option. If the temperature does not change, the output still has to
be recalculated. For this reason an extra GPIO register is added, which
holds a value that switches between 0 and 1 every time a temperature is
written. This alone is, however, not enough. Waiting for an AXI GPIO
value to change cannot by itself trigger a process on an FPGA. While it can
be implemented in VHDL, the FPGA would need a mechanism to actively
observe a value C on GPIO to be able to tell when the value changes.

By adding a register that stores the last read C, the register and GPIO
can be compared every clock cycle. This then allows to start the calculation
of the output only when a temperature value has been written. Since not
all of the computation fits in one clock cycle, the p0, p1, p2 values are saved
in registers and in the next cycle the fan speed u is calculated.

Doing this as a pipeline would not work, since then the output would be
calculated twice instead of once. Instead, during the first cycle only the first
part of the calculation is done and during the second cycle only the second
part of the calculation is executed. To trigger the execution of the second
part, an additional register is introduced, whose value is set to 1 at the end
of the cycle that recalculated p0, p1 and p2. As with the C register at the
beginning of each cycle it is checked if this register is set to the value 1. If
so, the second part of the computation is executed and the register is set to
0 again.

16

Figure 6: Set up for testing the PID fan controller

6.3 Tuning and Testing the PID controller

First, it was tested, that the PID controller integrated into Enzian can mea-
sure temperatures and set fan speeds. This was done by reading the BMC’s
internal temperature sensor and controlling a fan that was connected to a
partially populated Enzian board, the partpop2. This could however only
test if single components of the fan control system were working, not if it
would react as expected to changing temperatures. Also, this could not be
used to tune the PID controller. To tune the PID controller, both low and
hight temperatures have to be reached controllably and the fan has to set
up to cool the component that is heating up.

For this reason the fan was set up to cool resistors, which were used
to generate heat and were connected to an external power source. The
temperature at the resistors was measured with a diode connected to the
partpop2.

The resistors were supplied with 2.97 volt and produced 0.4455 watt.
When the resistors were not supplied with power and the fan was turned
off, the diode measured room temperature at approximately 25◦C. With the
resistors heating, a maximal temperature of 45.75◦C was measured. When
also running the fan at full speed, the temperature stabilised at around
31◦C.

This is not the temperature range required to fully tune a PID con-
troller before it is used to control the fan speed, but it is enough for testing
purposes. Once it is established that the PID controller functions as ex-
pected inside the Enzian BMC FPGA, the only things that would have to
change, before using it to cool a running system, are the set point and the

17

gains. Whenever the PID controller is used with a new fan, these have to
be adapted anyway, since the set point depends on the position of the diode
and what exactly has to be ventilated. The gains depend on the specific
fan. A powerful fan needs different gains than a fan that, with a 100% duty
cycle, can only achieve halve or a fourth of the power.

Since the range of controllable temperature was between 31◦C and 45◦C
the set point was set to 35◦C. The proportional gain was set to 0.00001, such
that the fan would receive maximal power at 45◦C. Since in this tempera-
ture range the temperature reacted quickly to the changes in fan speed, the
integral part could be kept small with setting the integral time constant to
10. The derivative time constant was set to 0 because for fan control over-
shooting is not an issue, although it might not result in optimal efficiency.

How fan speed and temperature behave when first the PID controller
and the fan are activated and then the resistors are supplied with power, is
visible in figure 7a. The temperature rises and then stabilises slightly above
the set point. In figure 7b it is shown, how temperature and fan speed
behave when the fan is only activated once the resistors have heated up.
The temperature decreases quickly and as in figure 7a it stabilises slightly
above the fix point.

This shows, that the PID controller on the Enzian BMC FPGA behaves
as expected.

18

(a) Fan controller is activated before resistors

(b) Fan controller is activated after resistors

Figure 7: Temperature in ◦C and fan speed in duty cycle over time

19

7 Conclusion

To examine the possibility of doing real-time board management with an
FPGA, a PID controller was implemented and tested on the Enzian BMC,
to control the fan speed. The resulting controller could, in theory, directly
be used. However, as mentioned in the previous section, the PID fan con-
troller has to be tuned for every fan and diode position. For this, a tuning
set up would have to be built first.

Implementing a PID fan controller on the BMC FPGA revealed some
challenges that arise when using the FPGA to handle tasks of the BMC.

A big one is the communication between the FPGA and other compo-
nents of the system. In this project this was not handled by the FPGA,
allowing the focus to be on the testing of the general concept of doing board
management with an FPGA. On the Enzian BMC FPGA I2C is however
already implemented. What remains to be done is generating the device
specific commands and extracting the desired values from the responses.

A difficulty that was solved when it appeared, is handling asynchrony.
The source of asynchrony was the CPU writing the temperature value to
the AXI GPIO. If the FPGA handles all communication with other devices
over I2C, this will likely have to be handled differently. Mainly because with
the I2C implementation on the FPGA synchronisation will have to happen
at a different stage.

Handling of faults or alerts from the system is an aspect of board man-
agement, that has not been examined in this project. However, this are
tasks the FPGA would be suited for well, since depending on the alert, fast
handling is crucial. Here, it is likely that as with the GPIO writes, signals
would also reach the FPGA asynchronously.

20

References

[1] M. Kocur, S. Kozak, and B. Dvorscak, “Design and implementation
of fpga-digital based pid controller,” in Proceedings of the 2014 15th
International Carpathian Control Conference (ICCC). IEEE, 2014,
pp. 233–236.

[2] C. Heimhofer, “Towards high-assurance board management controller
software,” Master’s thesis, ETH Zürich, 2021.

[3] J. Frazelle, “Opening up the baseboard management controller,” Com-
munications of the ACM, vol. 63, no. 2, pp. 38–40, 2020.

[4] L. Benini, R. Hodgson, and P. Siegel, “System-level power estimation
and optimization,” in Proceedings of the 1998 International Symposium
on Low Power Electronics and Design, ser. ISLPED ’98. New York,
NY, USA: Association for Computing Machinery, 1998, p. 173–178.
[Online]. Available: https://doi.org/10.1145/280756.280881

[5] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” 2000.

[6] K. Pozniak, R. Romaniuk, and K. Kierzkowski, “Modular and reconfig-
urable common pcb-platform of fpga based llrf control system for tesla
test facility,” 2005.

[7] B. Venkateshmurthy and K. Nataraj, “Design and implementation of
high speed fpga for under & over voltage protective relay,” in 2017
International Conference on Recent Advances in Electronics and Com-
munication Technology (ICRAECT). IEEE, 2017, pp. 76–80.

[8] M. Daboul and Z. Nouman, “The control of fan speed using fpga
boards,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie
Środowiska, 2014.

[9] Y. F. Chan, M. Moallem, and W. Wang, “Design and implementation
of modular fpga-based pid controllers,” IEEE transactions on Industrial
Electronics, vol. 54, no. 4, pp. 1898–1906, 2007.

[10] “Introduction: Pid controller design,” https://ctms.engin.umich.
edu/CTMS/index.phpexample=Introduction§ion=ControlPID,
accessed: 10.04.2021.

21

Eidgenössische Technische Hochschute Zürich

Swiss Federat lnstitute of Technotogy Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,

Master's thesis and any other degree paper undertaken during the course of studies, including the

respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their

courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it

in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

:

: Real-time Board Management using an FPGA

Authored by (in block letters):

For papers wiften by groups the names of all authors are required.

Name(s):

Tröndle

First name(s):

Sarah

With my signature I confirm that

- I have committed none of the forms of plagiarism described in the 'Citation etiqlretlC' information

sheet.

- I have documented all methods, data and processes truthfully.

- I have not manipulated any data.

- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date

Windlach, 12.04.2021

Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire

content of the written paper.

